天地往返运输系统是能够自由进出空间轨道、安全返回地球表面、执行天地往返运输任务的航天运输体系。近年来,随着先进动力、新材料、新工艺的带动效应逐渐显现,各航天集团开始了新一轮先进天地往返系统的研究,其中大量研究项目针对具备完全可重复使用、可大幅降低运送有效载荷进入太空成本的先进天地往返运输系统展开。本文针对这一热点领域进行综述性研究,对不同类型进出大气层飞行器的气动设计特点进行了分析,结果表明跨大气层飞行器是天地往返运输系统的主要载体,认为未来主要以火箭助推入轨滑翔再入和水平起飞水平返回为主要发展方向,两类飞行在气动设计方面有高超飞行器宽域飞行适应性的共性难题,同时在气动-动力一体化化设计方面又有较大的差异。
The space transportation system is a system that can freely enter and exit the space orbit, safely return to the earth surface, and undertake transportation missions between the space orbit and the earth. In recent years, the emerging of the driving effect of advanced power, new materials, and new technologies has spurred a new round of investigations on the advanced space transportation system by aerospace groups. This paper focuses on the research of this hot spot. The aerodynamic characteristics of different types of vehicles entering and leaving the atmosphere are analyzed. Among these studies, the cross-atmosphere vehicle is the main carrier in the space transportation system, and the main development direction of the future space transportation system involves rocket assisted launch and glide reentry vehicles, and horizontal take-off and horizontal landing vehicles. These two types of vehicles have common difficulties in aerodynamic design as well as large differences in power aerodynamic integration design.
[1] KUCZERA H, SACHER P. Reusable space transportation systems[M].Heidelberg:Springer, 2011.
[2] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace ences, 2016, 84:1-28.
[3] SMITH P M. A review of the competitive space transportation industry, from provider options to customer needs[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[4] KALERY A Y, SOROKIN I V, TYURIN M V. Human space exploration beyond the international space station:Role of relations of human, machine and the "Earth"[J]. Acta Astronautica, 2010, 67(7-8):925-933.
[5] 杨雷, 张柏楠, 郭斌, 等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713(in Chinese).
[6] 冯韶伟, 马忠辉, 吴义田,等. 国外运载火箭可重复使用关键技术综述[J]. 导弹与航天运载技术, 2014(5):82-86. FENG S W, MA Z H, WU Y T, et al. Survey and review on key technologies of reusable launch vehicle abroad[J]. Missiles and Space Vehicles, 2014(5):82-86(in Chinese).
[7] 崔乃刚, 吴荣, 韦常柱,等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018(2):27-42. CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018(2):27-42(in Chinese).
[8] 徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61:3453-3463. XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launchvehicle[J]. Chin Sci Bull, 2016, 61:3453-3463(in Chinese).
[9] Vertical launch spaceport[EB/OL].[2020-04-22]. http://www.darpa.mil.
[10] KANIA P. The German hypersonics technology program-overview[C]//International Aerospace Planes and Hypersonics Technologies, 1995.
[11] HIRSCHEL E. The hypersonics technology development and verification strategy of the German Hypersonics Technology Programme[C]//5th International Aerospace Planes and Hypersonics Technologies Conference, 1993.
[12] MOWRY E C, CHRISTENSEN C B, SMITH P. The global launch industry:Progress and evolution[J]. Recent Successful Satellite Systems:Visions of the Future, 2016:405.
[13] WEINGARTNER S, KUCZERA H. Selection and design guidelines for future space transportation systems[C]//International Aerospace Planes &Hypersonics Technologies Conference, 2013.
[14] HEITMEIR F, LEDERER R, HERRMANN O. German hypersonic technology programmeairbreathing propulsion activities[C]//Symposium on Multidisciplinary Analysis & Optimization, 1992.
[15] ZELLNER B, STERR W, HERRMANN O. Integration of turbo-expander and turbo-ramjet engines in hypersonic vehicles[J]. Journal of Engineering for Gas Turbines & Power, 1994, 116(1):90.
[16] HIRSCHEL E H.Aerothermodynamic challenges of the Saenger space-transportation system[R]. 1991.
[17] SMITH J. Could air force space command benefit from commercial space companies like SpaceX, XCOR, Virgin Galactic, and Bigelow Aerospace?[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA, 2011.
[18] THOMPSON T, WEEKS D, WALKER S, et al. DARPA/USAF falcon program update on the SpaceX maiden launch, mishap investigation and return to flight[C]//AIAA SPACE 2007 Conference & Exposition. Reston:AIAA, 2007.
[19] SPISZ T S, TAYLOR J C, GIBSON D, et al. Processing infrared imagery of the spacex falcon first stage reentry during CRS-4 mission[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2017.
[20] Service to earth orbit, the moon, mars and beyond[EB/OL].[2019-12-18].http://www.spacex.com/starship.
[21] Intercontinental passenger point-to-point transport system[EB/OL].[2019-12-18]. https://www.gravitationinnovation.com.
[22] Starship assembly site[EB/OL].[2019-12-18]. https://www.nasaspaceflight.com.
[23] SIPPEL M.SpaceLiner technical progress and mission definition[C]//AIAA International Space Planes & Hypersonic Systems & Technologies Conference. Reston:AIAA, 2015.
[24] FERRI A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 2012, 5(1):3-10.
[25] CURRAN ET. Scramjet engines:The first forty years[J]. Journal of Propulsion & Power,2001, 17(6):1138-1148.
[26] YENTSCH R J, GAITONDE D V. Numerical investigation of dual-mode operation in a rectangular scramjet flowpath[J]. Journal of Propulsion & Power,2014, 30(2):474-489.
[27] AVERY W H, DUGGER G L. Hypersonic air breathing propulsion[M]. 1994.
[28] SERRANI A, ZINNECKER A M, FIORENTINI L, et al. Integrated adaptive guidance and control of constrained nonlinear air-breathing hypersonic vehicle models[C]//2009 American Control Conference, 2009.
[29] FIORENTINI L, SERRANI A, BOLENDER M A,et al. Robust nonlinear sequential loop closure control design for an air-breathing hypersonic vehicle model[C]//American Control Conference, 2008.
[30] HE YY, LE J L, NI H L. Numerical and experimental study of airbreathing hypersonic airframe/propulsion integrative vehicle[J]. Journal of Experiments in Fluid Mechanics, 2007,2(7):29-34.
[31] TAUBER M E, MENEES G P, ADELMAN H G. Aerothermodynamics of transatmospheric vehicles[J]. Journal of Aircraft,1987, 24(9):594-602.
[32] LOPEZREIG J, REBOLO R, MATESANZ A, et al. Integration of hypersonic aerothermodynamics design methods[C]//Space Plane and Hypersonic Systems and Technology Conference,2013.