固体力学与飞行器总体设计

碰摩约束下柔性转子模态特性及其计算方法

  • 于平超 ,
  • 陈果 ,
  • 王存 ,
  • 杨默晗
展开
  • 1. 南京航空航天大学 民航学院, 南京 211106;
    2. 北京动力机械研究所, 北京 100074

收稿日期: 2020-03-27

  修回日期: 2020-04-20

  网络出版日期: 2020-05-28

基金资助

中央高校基本科研业务费(NT2020018);国家自然科学基金(52005252);国家科技重大专项(2017-IV-0008-0045)

Modal characteristics and calculation method for flexible rotor system with rubbing constraint

  • YU Pingchao ,
  • CHEN Guo ,
  • WANG Cun ,
  • YANG Mohan
Expand
  • 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. Beijing Institute of Power Machinery, Beijing 100074, China

Received date: 2020-03-27

  Revised date: 2020-04-20

  Online published: 2020-05-28

Supported by

Fundamental Research Funds for the Central Universities (NT2020018); National Natural Science Foundation of China (52005252); National Science and Technology Major Project(2017-IV-0008-0045)

摘要

以航空发动机低压(LP)转子为代表的柔性转子,通常具有两端大质量、细长轴和长跨度支承的"弱刚度"结构力学特征,这使得碰摩产生的约束作用不可忽视,其将会导致柔性转子模态特性改变,进而造成临界转速等动力学目标偏于设计状态。本文以典型航空发动机低压柔性转子为对象,结合梁单元法提出了此类复杂转子在碰摩约束下的动力学建模方法;将谐波平衡思想与频域的自由度缩减技术结合,提出了相适用的非线性模态求解方法;在此之上基于ANSYS和MATLAB平台,建立了含碰摩约束的复杂转子非线性模态分析的一般流程。将方法应用到某型柔性转子系统,成功获得其模态特性,结果表明:碰摩约束使转子模态频率增加,且随转子振幅增加而增加,尤其是对风扇碰摩较为敏感的一阶弯曲模态,正/反进动模态频率变化率可达16%和29%,但模态频率的变化始终在特定区间内;碰摩对转子模态频率的影响程度与陀螺效应、转子振型及机匣刚度密切相关,但对摩擦系数不敏感。由于接触点处摩擦力做功影响,柔性转子各阶反进动模态阻尼在碰摩严重时小于0,反进动模态能发生失稳。

本文引用格式

于平超 , 陈果 , 王存 , 杨默晗 . 碰摩约束下柔性转子模态特性及其计算方法[J]. 航空学报, 2020 , 41(12) : 224029 -224029 . DOI: 10.7527/S1000-6893.2020.24029

Abstract

The aero-engine Low Pressure (LP) rotor system, usually of large mass, thin and long shaft and long-span supports, has a feature of low stiffness. When rub-impact occurs, the constraint effect must be considered, as it will significantly change the modal characteristics and lead to deviation of dynamic targets from the design value. In this paper, a dynamic modeling method for typical LP rotor systems in aero-engines is proposed based on the beam element method. By combining the harmonic balance and condensation method of degree of freedom in the frequency domain, an effective method is built to solve the nonlinear mode of the complex rotor system. The above methods are achieved using ANSYS and MATLAB software, and successfully applied to the analysis of the modal characteristics of real LP rotors in aero-engines. Results show that the rub-impact significantly increases the modal frequencies of the rotor system. Particularly for the first order modes, the change in the forward whirl and backward whirl modal frequencies can respectively reach 16% and 29%. However, the changes in modal frequencies are always within a certain range and have interval characteristics. While closely related to gyroscopic effect, modal shapes and casing stiffness, the influence of rub-impact on modal frequency is not sensitive to the friction coefficient. Moreover, due to the friction force at the rubbing point, the modal damping of the backward whirl mode may be less than zero when the rub-impact is severe, leading to the unstable backward whirl model.

参考文献

[1] 江俊, 陈艳华. 转子与定子碰摩的非线性动力学研究[J]. 力学进展, 2013, 43(1):132-148. JIANG J, CHEN Y H. Advances in the research on nonlinear phenomona in rotor/stator rubbing systems[J]. Advances in Mechanics, 2013, 43(1):132-148(in Chinese).
[2] MA H, YIN F, GUO Y, et al. A review on dynamic characteristics of blade-casing rubbing[J]. Nonlinear Dynamics, 2016, 84(2):437-472.
[3] MUSZYNSKA A. Rotordynamics[M]. New York:Taylor & Francis, 2005.
[4] CHU F, ZHANG Z. Bifurcation and chaos in a rub-impact Jeffcott rotor system[J]. Journal of Sound and Vibration, 1998, 210(1):1-18.
[5] CHEN G, LI C G, WANG D Y. Nonlinear dynamic analysis and experiment verification of rotor-ball bearings-support-stator coupling system for aero-engine with rubbing coupling faults[J]. Journal of Engineering for Gas Turbines and power, 2010, 132(2):022501.
[6] MA H, SHI C Y, HAN Q K, et al. Fixed-point rubbing fault characteristic analysis of a rotor system based on contact theory[J]. Mechanical Systems and Signal Processing, 2013, 38(1):137-153.
[7] MA H, WU Z Y, TAI X Y, et al. Dynamic characteristics analysis of a rotor system with two types of limiters[J]. International Journal of Mechanical Sciences, 2014, 88:192-201.
[8] MA H, ZHAO Q B, ZHAO X Y, et al. Dynamic characteristics analysis of a rotor-stator system under different rubbing forms[J]. Applied Mathematical Modelling, 2015, 39(8):2392-2408.
[9] CHU F, LU W. Stiffening effect of the rotor during the rotor-to-stator rub in a rotating machine[J]. Journal of Sound and Vibration, 2007, 308(3):758-766.
[10] CHU F, LU W. Determination of the rubbing location in a multi-disk rotor system by means of dynamic stiffness identification[J]. Journal of Sound and Vibration, 2001, 248(2):235-246.
[11] WANG C, ZHANG D, MA Y, et al. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off[J]. Mechanical Systems and Signal Processing, 2016, 76:111-135.
[12] HONG J, YU P, ZHANG D, et al. Modal characteristics analysis for a flexible rotor with non-smooth constraint due to intermittent rub-impact[J]. Chinese Journal of Aeronautics, 2018, 31(3):498-513.
[13] 陈艳华, 江俊. 转子/定子碰摩系统的非线性模态及其在干摩擦反向涡动响应预测中的应用[J]. 西安交通大学学报, 2014, 48(5):82-88. CHEN Y H, JIANG J. Determination of nonlinear normal modes with applications to prediction of dry friction backward whirl motion of a rotor/stator rubbing system[J]. Journal of Xi'an Jiaotong University, 2014, 48(5):82-88(in Chinese).
[14] HONG J, YU P, ZHANG D, et al. Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact[J]. Mechanical Systems and Signal Processing, 2019, 116:443-461.
[15] 洪杰, 马艳红, 张大义. 航空燃气轮机总体结构设计与动力学分析[M]. 北京:北京航空航天大学出版社, 2014. HONG J,MA Y H, ZHANG D Y. Overall structural design and dynamic analysis of aviation gas turbine[M]. Beijing:Beihang University Press, 2014(in Chinese).
[16] SINHA S K. Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub[J]. Journal of Sound and Vibration, 2004, 273(4):875-919.
[17] ROSENBERG R M. The normal modes of nonlinear n-degree-of-freedom systems[J]. Journal of Applied Mechanics, 1962, 29:7-14.
[18] KRACK M, PANNING-VON S L, WALLASCHEK J. A method for nonlinear modal analysis and synthesis:Application to harmonically forced and self-excited mechanical systems[J]. Journal of Sound and Vibration, 2013, 332(25):6798-6814.
[19] LAXALDE D, SALLES L, BLANC L, et al. Non-linear modal analysis for bladed disks with friction contact interfaces[C]//ASME Turbo Expo 2008. New York:ASME,2008.
[20] CAO D, YANG Y, CHEN H, et al. A novel contact force model for the impact analysis of structures with coating and its experimental verification[J]. Mechanical Systems and Signal Processing, 2016, 70:1056-1072.
文章导航

/