Performance degradation and intermittent faults are important indicators of airborne radar health state. Traditional airborne radar health state assessment methods lack monitoring indicators at the overall system level and fail to comprehensively consider performance degradation and intermittent faults, and it is difficult for the traditional BIT circuit to monitor intermittent faults. Aiming at the above engineering problems, this paper puts forward a method based on the channel calibration circuit, combining the channel calibration simulation technology, the normal cloud model and HMM to build a health state assessment process. First, the channel errors and intermittent faults are analyzed to obtain four kinds of correction coefficients, thus establishing the simulation process of errors and intermittent fault injection. Then, based on the normal cloud model, the sample variance of the correction coefficients is used to represent the health state of the radar system, a unified health model is proposed, and the HMM topology and parameter design method are given. Finally, the data-driven evaluation process is established and its application studied. The simulation experiment verifies the feasibility of the errors and intermittent fault simulation process and the validity of the health state evaluation method, reaching an assessment accuracy of over 95%. The application case shows that the proposed method is feasible and can solve the problem of health state evaluation of airborne radars in engineering.
[1] 胡昌华, 施权, 司小胜, 等. 数据驱动的寿命预测和健康管理技术研究进展[J]. 信息与控制, 2017, 46(1):72-82. HU C H, SHI Q, SI X S, et al. Data-driven life prediction and health management:state of the art[J]. Information and Control, 2017, 46(1):72-82(in Chinese).
[2] 吕克洪, 程先哲, 李华康, 等. 电子设备故障预测与健康管理技术发展新动态[J]. 航空学报, 2019, 40(11):023285. LYU K H, CHENG X Z, LI H K, et al. New developments of prognostic and health management technology for electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(11):023285(in Chinese).
[3] 高洪青. 有源相控阵雷达状态监测与健康管理技术[J]. 计算机测量与控制, 2016,24(9):146-148. GAO H Q. Research on architecture of condition monitoring and health management of active electronically scanned array radar[J]. Computer Measurement & Control, 2016,24(9):146-148(in Chinese).
[4] 胡文华, 史林, 薛东方. 雷达智能BIT中整机性能监测系统的设计与实现[J]. 计算机测量与控制, 2012,20(7):153-155. HU W H, SHI L, XUE D F. Design and realization of integrated performance monitoring system in intelligent BIT for radar equipment[J]. Computer Measurement & Control, 2012,20(7):153-155(in Chinese).
[5] 王索建. 基于健康管理的有源相控阵雷达威力性能评估方法[J]. 计算机测量与控制, 2019,27(2):271-274. WANG S J. Phased array radar range performance evaluation method for radar health management[J]. Computer Measurement & Control, 2019, 27(2):271-274(in Chinese).
[6] 尹明, 叶晓慧, 李桥敏, 等. 基于证据融合的雷达发射机健康评估[J]. 海军工程大学学报, 2015, 27(5):52-55. YIN M, YE X H, LI Q M, et al. Health assessment research of radar transmitter based on evidence fusion[J]. Journal of Naval University of Engineering, 2015, 27(5):52-55(in Chinese).
[7] 周东华, 史建涛, 何潇.动态系统间歇故障诊断技术综述[J]. 自动化学报, 2014, 40(2):161-171. ZHOU D H, SHI J T, HE X. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2):161-171(in Chinese).
[8] 邓冠前, 邱静, 李智, 等. 间歇故障诊断技术研究综述[J]. 兵工自动化, 2015,34(1):15-20. DENG G Q, QIU J, LI Z, et al. A survey on intermittent fault diagnosis technology[J]. Ordnance Industry Automation, 2015,34(1):15-20(in Chinese).
[9] 刘冠军, 吕克洪, 李华康, 等. 装备无故障发现与间歇故障诊断技术[J]. 测控技术, 2019, 38(1):9-16. LIU G J, LYU K H, LI H K, et al. No fault found and intermittent diagnosis technique for equipment[J]. Measurement & Control Technology, 2019, 38(1):9-16(in Chinese).
[10] ANTONIO C, EMILIO G, FRANCISCO M, et al. Intermittent failure dynamics characterization[J]. IEEE Transactions on Reliability, 2012, 61(3):649-658.
[11] WAKIL A S, SAMIR K, PAUL P, et al. Intermittent fault finding strategies[J]. Procedia CIRP,2013,11:74-79.
[12] 李德毅, 刘常昱.论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8):28-34. LI D Y, LIU C Y. Study on the universality of the normal cloud model[J]. Strategic Study of CAE, 2004, 6(8):28-34(in Chinese).
[13] 鞠建波, 胡胜林, 祝超. 基于最优测试点的小波包-隐马尔科夫模型故障诊断[J]. 四川兵工学报, 2017, 38(4):91-94. JU J B, HU S L, ZHU C. Fault diagnosis system of wavelet packet and hidden markov model based on optimal test point[J]. Journal of Sichuan Ordnance, 2017, 38(4):91-94(in Chinese).
[14] 张继军, 马登武, 张金春. 基于HMM的电子设备状态监测与健康评估[J]. 系统工程与电子技术, 2013, 35(8):1692-1696. ZHANG J J, MA D W, ZHANG J C. State monitoring and health evaluation of electronic equipment using HMM[J]. Systems Engineering and Electronics, 2013, 35(8):1692-1696(in Chinese).
[15] 罗钉.机载有源相控阵火控雷达技术[M]. 北京:航空工业出版社, 2018:95-100. LUO D. Ariborne AESA fire-control radar[M]. Beijing:Aviation Industry Press, 2018:95-100(in Chinese).
[16] 刘常昱, 李德毅, 潘莉莉. 基于云模型的不确定性知识表示[J]. 计算机工程与应用, 2004, 40(2):35-38. LIU C Y, LI D Y, PAN L L. Uncertain knowledge representation based on cloud model[J]. Computer Engineering and Applications, 2004,40(2):35-38(in Chinese).
[17] 王健, 肖文杰, 王树文, 等. 一种改进的基于云模型的效能评估方法[J]. 火力与指挥控制, 2010, 35(7):139-142. WANG J, XIAO W J, WANG S W, et al. An improved effectiveness evaluation method based on cloud model[J]. Fire Control & Command Control, 2010, 35(7):139-142(in Chinese).
[18] GEER J F, KLIR G J. A mathematical analysis of information-preserving transformations between probabilistic and possibilistic formulations of uncertainty[J]. International Journal of General Systems, 1992, 20(2):143-176.
[19] 张银燕, 李弼程, 崔家玮. 基于云贝叶斯网络的目标威胁评估方法[J]. 计算机科学, 2013, 40(10):127-131. ZHANG Y Y, LI B C, CUI J W. Method of target threat assessment based on cloudy Bayesian network[J]. Computer Science, 2013, 40(10):127-131(in Chinese).
[20] 崔江, 王友仁. 一种云样本的控制产生及在电路故障诊断中的应用[J]. 控制理论与应用, 2008, 25(3):556-559. CUI J, WANG Y R. A method of cloud-sample control and generation with application to circuit fault diagnosis[J]. Control Theory & Applications, 2008, 25(3):556-559(in Chinese).
[21] 李航.统计学习方法[M].北京:清华大学出版社,2012:171-189. LI H. Methods of statistical learning[M]. Beijing:Tsinghua University Press, 2012:171-189(in Chinese).