Aiming at the attitude-coupling control problem of hypersonic vehicles, this paper proposes a limited time fuzzy control scheme based on attitude coupling characteristics. A rudder system is first introduced into the attitude dynamic model of hypersonic vehicles with consideration of the engineering reality, thereby establishing a relatively perfect attitude dynamic model. By introducing the desired attitude tracking instructions, a control-oriented attitude error model is established. Secondly, a finite-time controller is designed using the terminal sliding mode as a whole. Meanwhile, based on the coupling evaluation, a fuzzy control method is adopted to solve the system adaptability to the coupling and the chattering of the coupling. To solve external disturbances, a disturbance observer is used, followed by verification of the system stability based on the Lyapunov stability theory. Finally, considering the characteristics of the rudder system, aerodynamic deflection, and control chattering in the process, the simulation proves the effectiveness of the method.
[1] 王建华,刘鲁华,王鹏,等.高超声速飞行器俯冲段制导控制一体化设计方法[J].航空学报,2017,38(3):320328. WANG J H, LIU L H, WANG P, et al. Integrated design method for guidance and control of hypersonic vehicle in dive phase[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):320328(in Chinese).
[2] 孙长银,穆朝絮,余瑶,等.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报,2013,39(11):1901-1913. SUN C Y, MU Z X, YU Y. Research on some scientific problems of hypersonic vehicle control in near space[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese)
[3] SNELL A. Decoupling control design with applications toflight[J]. Journal of Guidance Control and Dynamics, 1998, 21(4):647-655.
[4] LIANG M J, DU S F, CHEN L J, et al. Greenhouse multi-variables control by using feedback linearization decoupling method[C]//2017 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2017.
[5] 刘宇超,郭建国,周军,等.基于新型快速Terminal滑模的高超声速飞行器姿态控制[J].航空学报,2015,36(7):2372-2380. LIU Y C, GUO J G, ZHOU J, et al. Hypersonic vehicle attitude control based on new fast terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(7):2372-2380(in Chinese).
[6] 王婕,宗群,田栢苓,等.基于拟连续高阶滑模的高超声速飞行器再入姿态控制[J].控制理论与应用,2014,31(9):1166-1173. WANG J, ZONG Q, TIAN B L, et al. Reentry attitude control for hypersonic vehicle based on quasi-continuous high order sliding mode[J]. Control Theory & Applications 2014, 31(9):1166-1173(in Chinese).
[7] 张涛,李炯,王华吉,等.临近空间动能拦截器神经反演姿态控制器设计[J].航空学报,2018,39(8):321953. ZHANG T, LI J, WANG H J, et al. Attitude control of near space kinetic kill vehicle based on neural network backstepping control[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(8):321953(in Chinese).
[8] 骆长鑫,张东洋,雷虎民,等.输入受限的高超声速飞行器鲁棒反演控制[J].航空学报,2018,39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):321801(in Chinese).
[9] ZHANG J, REN Z, DENG C, et al. Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs[J]. Nonlinear Dynamics, 2019, 97(1):609-627.
[10] GEORGIE J, VALASEK J. Evaluation of longitudinal desired dynamics for dynamic-inversion controlled generic reentry vehicles[J]. Journal of Guidance Control and Dynamics, 2003, 26(5):811-819.
[11] GROSDIDIER P, MORARI M. The μ interaction measure[J]. Industrial & Engineering Chemistry Research, 1987, 26(6):1193-1202.
[12] SU X, JIA Y. Self-scheduled robust decoupling control with H∞ performance of hypersonic vehicles[J]. Systems & Control Letters, 2014, 70(70):38-48.
[13] 周凤岐,王延,周军,等.高超声速飞行器耦合系统变结构控制设计[J].宇航学报,2011,32(1):66-71. ZHOU F Q, WANG Y, ZHOU J. Design of variable structure controller for hypersonic[J]. Journal of Astronautics,2011,32(1):66-71(in Chinese).
[14] DENG C, YANG G. Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems[J]. Automatica, 2019, 103:62-68.
[15] JENSEN N, FISHER D G, SHAH S L. Interaction analysis in multivariable control systems[J]. Aiche Journal, 1986, 32(6):959-970.
[16] BRISTOL E. On a new measure of interaction for multivariable process control[J]. IEEE Transactions on Automatic Control, 1966, 11(1):133-134.
[17] GIGI S, TANGIRALA A K. Quantification of interaction in multiloop control systems using directed spectral decomposition[J]. Automatica, 2013, 49(5):1174-1183.
[18] HOVD M, SKOGESTAD S. Simple frequency-dependent tools for control system analysis, structure selection and design[J]. Automatica, 1992, 28(5):989-996.
[19] HE M J, CAI W J, NI W, et al. RNGA based control system configuration for multivariable processes[J]. Journal of Process Control, 2009, 19(6):1036-1042.
[20] GUO Z, ZHOU J, GUO J, et al. Coupling-characterization-based robust attitude control scheme for hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6350-6361.
[21] 郭宗易,周军,郭建国.新型高超声速飞行器耦合姿态控制系统设计[J].宇航学报,2017,38(3):270-278. GUO Z Y, ZHOU J, GUO J G. Novel coupling based attitude control system design for hypersonic vehicles[J]. Journal of Aeronautics, 2017, 38(3):270-278(in Chinese).
[22] 杜立夫,黄万伟,刘晓东,等.考虑特征模型的高超声速飞行器全通道自适应控制[J].宇航学报,2016,37(6):711-719. DU L F, HUANG W W, LIU X D, et al. Whole-channel adaptive control for hypersonic vehicle considering characteristic model[J].Journal of Astronautics, 2016,37(6):711-719(in Chinese).
[23] 郑建华,杨迪.鲁棒控制理论在倾斜转弯导弹中的应用[M]. 北京:国防工业出版社, 2001:85-90. ZHENG J H, YANG D. Application of robust control theory in BTT missile[M]. Beijing:National Defense Industry Press, 2001:85-90(in Chinese).