空天往返飞行器制导控制技术专栏

高超声速飞行器有限时间耦合模糊控制

  • 郭建国 ,
  • 鲁宁波 ,
  • 周军
展开
  • 西北工业大学 精确制导与控制研究所, 西安 710072

收稿日期: 2020-01-14

  修回日期: 2020-03-04

  网络出版日期: 2020-05-28

基金资助

国家自然科学基金(61973254,61803308);西北工业大学研究生创意创新种子基金(CX2020046)

Fuzzy control of finite time attitude coupling in hypersonic vehicles

  • GUO Jianguo ,
  • LU Ningbo ,
  • ZHOU Jun
Expand
  • Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-01-14

  Revised date: 2020-03-04

  Online published: 2020-05-28

Supported by

National Natural Science Foundation of China(61973254,61803308); Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(CX2020046)

摘要

针对高超声速飞行器的角度与角速度子系统间的耦合控制问题,提出了一种基于耦合特性评价的有限时间模糊控制方案。首先,针对高超声速飞行器的动力学模型,并且考虑到与工程实际相结合,将舵系统引入到动力学模型中,建立了相对完善的动力学模型,通过引入期望指令,建立了面向控制的动力学误差模型。其次,在控制律设计上采用终端滑模设计了有限时间控制器,同时在耦合评价的基础上,为了解决系统对耦合的适应性以及耦合的抖振问题采用了模糊控制方法,并借助于干扰观测器解决外部干扰问题。采用李雅普诺夫稳定性理论证明了所设计的控制律是有限时间稳定性的。在数字仿真过程中,充分考虑了舵系统特性、气动拉偏、控制输入抖动等因素,仿真结果表明该方法是有效的。

本文引用格式

郭建国 , 鲁宁波 , 周军 . 高超声速飞行器有限时间耦合模糊控制[J]. 航空学报, 2020 , 41(11) : 623838 -623838 . DOI: 10.7527/S1000-6893.2020.23838

Abstract

Aiming at the attitude-coupling control problem of hypersonic vehicles, this paper proposes a limited time fuzzy control scheme based on attitude coupling characteristics. A rudder system is first introduced into the attitude dynamic model of hypersonic vehicles with consideration of the engineering reality, thereby establishing a relatively perfect attitude dynamic model. By introducing the desired attitude tracking instructions, a control-oriented attitude error model is established. Secondly, a finite-time controller is designed using the terminal sliding mode as a whole. Meanwhile, based on the coupling evaluation, a fuzzy control method is adopted to solve the system adaptability to the coupling and the chattering of the coupling. To solve external disturbances, a disturbance observer is used, followed by verification of the system stability based on the Lyapunov stability theory. Finally, considering the characteristics of the rudder system, aerodynamic deflection, and control chattering in the process, the simulation proves the effectiveness of the method.

参考文献

[1] 王建华,刘鲁华,王鹏,等.高超声速飞行器俯冲段制导控制一体化设计方法[J].航空学报,2017,38(3):320328. WANG J H, LIU L H, WANG P, et al. Integrated design method for guidance and control of hypersonic vehicle in dive phase[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):320328(in Chinese).
[2] 孙长银,穆朝絮,余瑶,等.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报,2013,39(11):1901-1913. SUN C Y, MU Z X, YU Y. Research on some scientific problems of hypersonic vehicle control in near space[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese)
[3] SNELL A. Decoupling control design with applications toflight[J]. Journal of Guidance Control and Dynamics, 1998, 21(4):647-655.
[4] LIANG M J, DU S F, CHEN L J, et al. Greenhouse multi-variables control by using feedback linearization decoupling method[C]//2017 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2017.
[5] 刘宇超,郭建国,周军,等.基于新型快速Terminal滑模的高超声速飞行器姿态控制[J].航空学报,2015,36(7):2372-2380. LIU Y C, GUO J G, ZHOU J, et al. Hypersonic vehicle attitude control based on new fast terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(7):2372-2380(in Chinese).
[6] 王婕,宗群,田栢苓,等.基于拟连续高阶滑模的高超声速飞行器再入姿态控制[J].控制理论与应用,2014,31(9):1166-1173. WANG J, ZONG Q, TIAN B L, et al. Reentry attitude control for hypersonic vehicle based on quasi-continuous high order sliding mode[J]. Control Theory & Applications 2014, 31(9):1166-1173(in Chinese).
[7] 张涛,李炯,王华吉,等.临近空间动能拦截器神经反演姿态控制器设计[J].航空学报,2018,39(8):321953. ZHANG T, LI J, WANG H J, et al. Attitude control of near space kinetic kill vehicle based on neural network backstepping control[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(8):321953(in Chinese).
[8] 骆长鑫,张东洋,雷虎民,等.输入受限的高超声速飞行器鲁棒反演控制[J].航空学报,2018,39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):321801(in Chinese).
[9] ZHANG J, REN Z, DENG C, et al. Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs[J]. Nonlinear Dynamics, 2019, 97(1):609-627.
[10] GEORGIE J, VALASEK J. Evaluation of longitudinal desired dynamics for dynamic-inversion controlled generic reentry vehicles[J]. Journal of Guidance Control and Dynamics, 2003, 26(5):811-819.
[11] GROSDIDIER P, MORARI M. The μ interaction measure[J]. Industrial & Engineering Chemistry Research, 1987, 26(6):1193-1202.
[12] SU X, JIA Y. Self-scheduled robust decoupling control with H∞ performance of hypersonic vehicles[J]. Systems & Control Letters, 2014, 70(70):38-48.
[13] 周凤岐,王延,周军,等.高超声速飞行器耦合系统变结构控制设计[J].宇航学报,2011,32(1):66-71. ZHOU F Q, WANG Y, ZHOU J. Design of variable structure controller for hypersonic[J]. Journal of Astronautics,2011,32(1):66-71(in Chinese).
[14] DENG C, YANG G. Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems[J]. Automatica, 2019, 103:62-68.
[15] JENSEN N, FISHER D G, SHAH S L. Interaction analysis in multivariable control systems[J]. Aiche Journal, 1986, 32(6):959-970.
[16] BRISTOL E. On a new measure of interaction for multivariable process control[J]. IEEE Transactions on Automatic Control, 1966, 11(1):133-134.
[17] GIGI S, TANGIRALA A K. Quantification of interaction in multiloop control systems using directed spectral decomposition[J]. Automatica, 2013, 49(5):1174-1183.
[18] HOVD M, SKOGESTAD S. Simple frequency-dependent tools for control system analysis, structure selection and design[J]. Automatica, 1992, 28(5):989-996.
[19] HE M J, CAI W J, NI W, et al. RNGA based control system configuration for multivariable processes[J]. Journal of Process Control, 2009, 19(6):1036-1042.
[20] GUO Z, ZHOU J, GUO J, et al. Coupling-characterization-based robust attitude control scheme for hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6350-6361.
[21] 郭宗易,周军,郭建国.新型高超声速飞行器耦合姿态控制系统设计[J].宇航学报,2017,38(3):270-278. GUO Z Y, ZHOU J, GUO J G. Novel coupling based attitude control system design for hypersonic vehicles[J]. Journal of Aeronautics, 2017, 38(3):270-278(in Chinese).
[22] 杜立夫,黄万伟,刘晓东,等.考虑特征模型的高超声速飞行器全通道自适应控制[J].宇航学报,2016,37(6):711-719. DU L F, HUANG W W, LIU X D, et al. Whole-channel adaptive control for hypersonic vehicle considering characteristic model[J].Journal of Astronautics, 2016,37(6):711-719(in Chinese).
[23] 郑建华,杨迪.鲁棒控制理论在倾斜转弯导弹中的应用[M]. 北京:国防工业出版社, 2001:85-90. ZHENG J H, YANG D. Application of robust control theory in BTT missile[M]. Beijing:National Defense Industry Press, 2001:85-90(in Chinese).
文章导航

/