火星探测是目前国际深空探测的热点,而火星着陆是火星探测的关键技术之一,火星着陆器发展中面临的一个严峻的挑战是其气动环境远远不同于地球大气的空气。然而,现阶段大多数地面试验设备都是以空气为试验气体来设计的,而不是火星大气的CO2。本文利用高温热化学反应流动数值计算技术,对JF-12反向爆轰驱动激波风洞在火星进入环境下(主要气体成分是CO2)的运行特性进行了计算模拟,通过调整激波管中驱动/被驱动气体的初始参数和高/低压段的截面积比,来模拟其中的波系产生、传播过程以及反射激波与接触面的相互作用机制。研究发现,相同情况下驱动CO2的缝合激波马赫数要明显高于空气,通过减小驱动气体的声速和低压段的直径,可以在驱动CO2时获得驻室压力稳定的试验气体。
Martian spacecraft landing is one of the key technologies for Mars exploration which is one of the hotspots of current international deep space exploration. A serious challenge in the development of Martian landing technology is that the aerodynamic environment on the Mars is far different from the atmosphere on the Earth. However, most of the ground-based aerodynamic test facilities are designed initially for flow tests of air, instead of the carbon dioxide in the Martian atmosphere. In this work, we use the numerical calculation technology of high temperature thermochemical reacting flow to simulate the operating characteristics of the new built hypersonic shock tunnel (JF-12) for hypersonic model tests in the atmosphere of Mars (mainly carbon dioxide). By adjusting the driver/driven gas parameters and the cross section area of the driven section, the interaction mode between reflected shock waves and contact surfaces can be trimmed for the tailored-interface operation condition in the simulation. It is found that the tailored shock Mach number of the driving carbon dioxide is significantly larger than that of the driving air, when only the type of the test gas is changed. Steady stagnation pressure can be achieved in the test gas of carbon dioxide by reducing the driven-to-driver cross area ratio and replacing the diluting gas N2 with CO2 in the detonation driver.
[1] BRAUN R D, MANNING R M. Mars exploration entry, descent, and landing challenges[J]. Journal of Spacecraft and Rockets, 2007, 44(2):310-323.
[2] ROBERT M M, MARK A A. Landing on Mars[C]//AIAA Space Conference.Reston:AIAA,2005.
[3] STELTZNER A, KIPP D, CHEN A, et al. Mars science laboratory entry, descent, and landing system[C]//IEEE Aerospace Conference.Piscataway:IEEE Press, 2006.
[4] 马广富,龚有敏,郭延宁,等. 载人火星探测进展及其EDL过程GNC关键技术[J]. 航空学报,2020, 41(7):323651. MA G F, GONG Y M, GUO Y N, et al. Research progress and EDL GNC key technologies of human mars mission[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323651(in Chinese).
[5] 黄飞, 吕俊明, 程晓丽, 等. 火星进入器高空稀薄气动特性[J]. 航空学报, 2017, 38(5):120457. HUANG F, LYU J M, CHENG X L, et al. Aerodynam ics of Mars entry vehicles under hypersonic rarefied condition[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120457(in Chinese).
[6] HOLDEN M, WADHAMS T, SMOLINSKI G, et al. Experimental and numerical studies on hypersonic vehicle performance in LENS shock and expansion tunnels[C]//AIAA Aerospace Sciences Meeting & Exhibit.Reston:AIAA, 2006.
[7] MACLEAN M, HOLDEN M. Catalytic effects on heat transfer measurements for aerothermal studies with CO2[C]//AIAA Aerospace Sciences Meeting & Exhibit.Reston:AIAA, 2013.
[8] MACLEAN M, HOLDEN M. Numerical assessment of data in catalytic and transitional flows for martian entry[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference.Reston:AIAA, 2006.
[9] JIANG Z L, YU H R. Theories and technologies for duplicating hypersonic flight conditions for ground testing[J]. National Science Review, 2017(3):12-18.
[10] JIANG Z L, YU H R. Experiments and development of the long-test-duration hypervelocity detonation-driven shock tunnel (LHDst)[C]//29th International Symposium on Shock Waves 1. Springer International Publishing, 2015.
[11] YU H R, ESSER B, LENARTZ M, et al. Gaseous detonation driver for a shock tunnel[J]. Shock Waves, 1992, 2(4):245-254.
[12] 李进平. 爆轰驱动高焓激波风洞关键问题研究[D]. 北京:中国科学院力学研究所, 2007. LI J P. Investigation into essential problems of detona tion-driven high enthalpy shock tunnels[D]. Beijing:Institute of Mechanics, Chinese Academy of Sciences,2007(in Chinese).
[13] 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3):347-355. JIANG Z L. Progress on experimental techniques of hypersonic and high-enthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3):347-355(in Chinese).
[14] 李进平, 冯珩, 姜宗林, 等. 爆轰驱动激波管缝合激波马赫数计算[J]. 空气动力学学报, 2008, 26(3):291-295. LI J P, FENG H, JIANG Z L, et al. Numerical computation on the tailored shock Mach numbers for a hydrogen-oxygen detonation shock tube[J]. Acta Aerodynamica Sinica, 2008, 26(3):291-295(in Chinese).
[15] 姜宗林, 李进平, 胡宗民,等. 高超声速飞行复现风洞理论与方法[J]. 力学学报, 2018, 50(6):1283-1291. JIANG Z L, LI J P, HU Z M, et al. Shock tunnel theory and methods for duplicating hypersonic flight conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6):1283-1291(in Chinese).
[16] 姜宗林, 李进平, 赵伟,等. 长试验时间爆轰驱动激波风洞技术研究[J]. 力学学报, 2012(5):20-27. JIANG Z L, LI J P, ZHAO W, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012(5):20-27(in Chinese).
[17] 俞鸿儒, 林建民, 李仲发,等. 扩张激波管流动波图观察[J]. 空气动力学学报, 1984(3):90-93. YU H R, LIN J M, LI Z F, et al. Observation of wave diagrams for shock tube with the divergent nozzle at diaphragm section[J]. Acta Aerodynamica Sinica, 1984(3):90-93(in Chinese).
[18] LADERMAN A J. Shock-tube performance with area divergence at the diaphragm section[J]. AIAA Journal, 1967, 5(10):1904-1906.
[19] ALPHER R A, WHITE D R. Flow in shock tubes with area change at the diaphragm section[J]. Journal of Fluid Mechanics Digital Archive, 1958, 3(5):457-470.
[20] 陈强. 激波管流动的理论和实验技术[M]. 合肥:中国科技大学出版社, 1979:208-212 CHEN Q. The theory and experimental technology of shock tube flow[M]. Hefei:University of Science and Technology of China Press, 1979:208-212(in Chinese).
[21] HU Z M, JIANG Z L. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1):33-41.
[22] JIANG Z L. On dispersion-controlled principles for non-oscillatory shock-capturing schemes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 20(1):1-15.