流体力学与飞行力学

高超声速钝头体边界层转捩试验

  • 陈苏宇 ,
  • 江涛 ,
  • 常雨 ,
  • 胡守超 ,
  • 李强 ,
  • 张扣立
展开
  • 中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000

收稿日期: 2020-04-15

  修回日期: 2020-04-25

  网络出版日期: 2020-05-21

基金资助

国家重点研发计划(2016YFA0401201)

Hypersonic boundary layer transition over bodies with blunt nosetip

  • CHEN Suyu ,
  • JIANG Tao ,
  • CHANG Yu ,
  • HU Shouchao ,
  • LI Qiang ,
  • ZHANG Kouli
Expand
  • Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-04-15

  Revised date: 2020-04-25

  Online published: 2020-05-21

Supported by

National Key Research and Development Program of China (2016YFA0401201)

摘要

为研究高超声钝头体边界层转捩以及头部钝度对转捩的影响,在FD-14和FD-14A两座激波风洞中开展了热流、压力扰动和高速纹影显示等综合测量。试验结果表明,转捩雷诺数关于钝度雷诺数的变化显示出转捩反转的趋势。压力扰动的功率谱密度(PSD)分析结果以流向离散分布云图形式显示,边界层高速纹影图像显示了第二模态波的发展、湍流的生成和熵层对边界层结构的显著影响。大头部钝度带来的强熵梯度熵层流动对边界层压力扰动频谱特性和流动结构影响显著,在转捩反转机理中起到重要作用。此外,马赫数对转捩的影响不容忽视。

本文引用格式

陈苏宇 , 江涛 , 常雨 , 胡守超 , 李强 , 张扣立 . 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020 , 41(12) : 124098 -124098 . DOI: 10.7527/S1000-6893.2020.24098

Abstract

To investigate hypersonic boundary layer transition and the effect of nosetip bluntness on transition, this study carries out experiments in both FD-14 and FD-14A shock tunnels. Integrated measurements including heat flux measurement, pressure disturbances measurement, and high-speed schlieren visualization are conducted. Results show that the transition Reynolds number as a function of Reynolds number based on nosetip bluntness exhibits a trend of transition-reversal. Power Spectral Density (PSD) analysis of pressure disturbances in the boundary layer is shown in the form of discrete contour maps in a streamwise direction. Development of second-mode waves, generation of turbulence and effect of the entropy layer on the boundary layer structure are visualized in images of high-speed schlieren. The entropy layer with an intense entropy gradient derived from large nosetip bluntness shows significant influence on the frequency spectral of pressure disturbances and flow structures of the boundary layer, playing an important role in the mechanism of transition-reversal. In addition, the effect of the Mach number should not be ignored.

参考文献

[1] ROBBINS B A, CASPER K M, COFFIN P, et al. Quantifying the structural response of a slender cone to turbulent spots at Mach 6:AIAA-2019-1631[R]. Reston:AIAA, 2019.
[2] HOLLIS B R. Blunt-body entry vehicle aerothermodynamics:transition and turbulence on the CEV and MSL configurations:AIAA-2010-4984[R]. Reston:AIAA, 2010.
[3] HOLLIS B R. Correlation of recent and historical hemispherical nose tip distributed roughness transition data[J]. Journal of Spacecraft and Rocket, 2019, 56(3):664-687.
[4] RADSPIEL R, ALI S R C, MUNOZ F, et al. Experimental investigation of roughness effects on transition on blunt spherical capsule shapes[J]. Journal of Spacecraft and Rocket, 2019, 56(2):405-420.
[5] 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾[J]. 航空学报, 2015, 36(3):714-723. XIE S F, YANG W B, SHEN Q. Review of progress in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723(in Chinese).
[6] SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:The role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72:17-29.
[7] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3):311-337. CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition:What we know, where we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337(in Chinese).
[8] SOFTLEY E J. Boundary layer transition on hypersonic blunt, slender cones:AIAA-1969-705[R]. Reston:AIAA, 1969.
[9] PARADES P, CHOUDHARI M M, LI F, et al. Nosetip bluntness effects on transition at hypersonic speeds:Experimental and numerical analysis under NATO STO AVT-240:AIAA-2018-0057[R]. Reston:AIAA, 2018.
[10] PARADES P, CHOUDHARI M M, LI F, et al. Nosetip bluntness effects on transition at hypersonic speeds[J]. Journal of Spacecraft and Rocket, 2019, 56(2):369-388.
[11] GROSSIR G, PINNA F, BONUCCI G, et al. Hypersonic boundary layer transition on a 7 degree half-angle cone at Mach 10:AIAA-2014-2279[R]. Reston:AIAA, 2014.
[12] BALAKUMAR P, CHOU A. Transition prediction in hypersonic boundary layers using receptivity and freestream spectra:NF1676L-21518[R]. Washington,D.C.:NASA, 2016.
[13] VAGANOV A V, NOEV A Y, KASHIN V M, et al. Scenarios of laminar-turbulent transition reversal on blunt cone in hypersonic flow[C]//AIP Conference Proceedings, 2018:030111.
[14] LAURENCE S J, WAGNER A, HANNEMANN K. Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization[J]. Journal of Fluid Mechanics, 2016, 797:471-503.
[15] KENNEDY R E, LAURENCE S J, SMITH M S, et al. Hypersonic boundary-layer transition features from high-speed schlieren images:AIAA-2017-1683[R]. Reston:AIAA, 2017.
[16] NIU H, YI S H, LIU X L, et al. Experimental study of crossflow instability over a delta flat plate at Mach 6[J]. AIAA Journal, 2019,57(12):5566-5574.
[17] ZHAO X H, ZHANG Q H. Experimental and numerical study of coherent structures in a roughness induced transtion boundary layer at Mach 5[J]. Physics of Fluids, 2018, 30(10):104102.
[18] ZHU Y D,CHEN, X, WU J Z, et al. Aerodynamic heating in hypersonic boundary layers:role of second-mode waves:AIAA-2017-2127[R]. Reston:AIAA, 2017.
[19] GRAY K A, CHYNOWETH B C, EDELMAN J B, et al. Boundary-layer transition measurements in the Boeing/AFOSR Mach-6 Quiet Tunnel:AIAA-2017-0068[R]. Reston:AIAA, 2017.
[20] BERRIDGE D C, MCKIEMAN G R, WADHAMS T P, et al. Hypersonic ground tests in support of the Boundary Layer Transition (BOLT) flight experiment:AIAA-2018-2893[R]. Restion:AIAA, 2018.
[21] KEGERISE M A, RUFER S J. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic boundary layer:AIAA-2016-0357[R]. Reston:AIAA, 2016.
[22] 李强,江涛,陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8):122740. LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122740(in Chinese).
[23] 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2):151-155. ZHOU H, ZHANG H X. Two problems in the transition and turbulence for nearspace hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2):151-155(in Chinese).
[24] PATE S R. Effects of wind tunnel disturbances on boundary-layer transition with emphasis on radiated noise:a review:AIAA-1980-0431[R]. Reston:AIAA, 1980.
[25] COOK D A, THOME J S, BROCK J M, et al. Understanding effects of nose-cone bluntness on hypersonic boundary layer transition using input-output analysis:AIAA-2018-0378[R]. Reston:AIAA, 2018.
[26] JEWELL J S, KENNEDY R E, LAURENCE S J, et al. Tranistion on a variable bluntness 7-degree cone at high Reynolds number:AIAA-2018-1822[R]. Reston:AIAA, 2018.
[27] EEDOROV A, TUMIN A. Evolution of disturbances in entropy layer on blunted plate in supersonic flow[J]. AIAA Journal, 2004, 42(1):89-95.
[28] 陈苏宇,常雨,江涛,等.高超声速边界层转捩高速纹影显示[J].宇航学报, 2019, 40(9):1006-1013. CHEN S Y, CHANG Y, JIANG T, et al. Hypersonic boundary layer transition visualized by high-speed schlieren technique[J]. Journal of Astronautics, 2019, 40(9):1006-1013(in Chinese).
文章导航

/