Oblique jet wall impingement has a wide range of applications in multiple fields such as liquid film cooling of liquid rocket engines and atomization. To study the key characteristics of the liquid film formed by the oblique jet wall impingement, we conducted an experimental study on a single cylindrical jet impinging onto the wall. The effects of various jet parameters on the liquid film shape were studied in the experiments, and theoretical modeling research was carried out to obtain the key geometric parameter expressions of the liquid film shape. It is found that as the jet angle increases, the liquid film length decreases and the width increases. As the jet diameter and velocity increase respectively, the liquid film length and width increase. Through theoretical analysis, the angle between the maximum width position and the symmetry plane of the liquid film is approximately equal to the incident angle α, and the aspect ratio of the liquid film 1+cot α. Further analyses obtain the geometric parameter expressions of the liquid film shape such as the width, the length, and the distance between the maximum width and the impinging point. The errors between the prediction and the experimental results are within 20% in the geometric parameter expressions established above.
[1] DRAKE M C, FANSLER T D, SOLOMON A S, et al. Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine[J]. Transactions of the ASABE, 2003, 112:762-783.
[2] LI Y, ZHANG C, YU W, et al. Effects of rapid burning characteristics on the vibration of a common-rail diesel engine fueled with diesel-methanol dual-fuel[J]. Fuel, 2016, 170:176-184.
[3] 沈赤兵, 陆政林. 相似理论在层板式喷注器试验研究中的应用[J]. 推进技术, 1995, 16(1):58-62. SHEN C B, LU Z L. An application of similarity theory to the experimental investigation of platelet injectors[J]. Journal of Propulsion Technology, 1995, 16(1):58-62(in Chinese).
[4] BHAGAT R K, WILSON D I. Flow in the thin film created by a coherent turbulent water jet impinging on a vertical wall[J]. Chemical Engineering Science, 2016, 152:606-623.
[5] WILSON D I, LE B L, DAO H D A, et al. Surface flow and drainage films created by horizontal impinging liquid jets[J]. Chemical Engineering Science, 2012, 68:449-460.
[6] 张锋, 仲伟聪. 膜冷却推力室传热计算研究[J]. 火箭推进, 2009, 35(4):34-38. ZHANG F, ZHONG W C. Computational investigation of heat transfer for film cooling thrust chamber[J]. Journal of Rocket Propulsion, 2009, 35(4):34-38(in Chinese).
[7] 张其阳, 王兵, 张会强, 等. 液膜内冷与辐射外冷发动机室压上限的研究[J]. 推进技术,2013,34(6):781-785. ZHANG Q Y, WANG B, ZHANG H Q, et al. A study on chamber pressure upper limit of liquid rocket engine utilizing film and radiative cooling[J]. Journal of Propulsion Technology, 2013, 34(6):781-785(in Chinese).
[8] 唐亮, 李平, 周立新.液体火箭发动机液膜冷却研究综述[J]. 火箭推进, 2020, 46(1):1-12. TANG L, LI P, ZHOU L X. Review on liquid film cooling of liquid rocket engine[J]. Journal of Rocket Propulsion, 2020, 46(1):1-12(in Chinese).
[9] KIBAR A, KARABAY H, YIGIT K S, et al. Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces[J]. Experiments in Fluids, 2010, 49:1135-1145.
[10] NICHOLAS L H, JOHN M K, MURAT D, et al. Drop impingement on wet and dry surfaces:AIAA-2012-2960[R]. Reston:AIAA,2012.
[11] SIKALO S,TROPEA C,GANIE E N. Phenomena of droplet-surface interaction[J]. Experimental Thermal and Fluid Science, 2006, 31(2):97-110.
[12] 刘森云, 沈一洲, 朱春玲,等. 液滴撞击超疏水表面的能量耗散机制[J]. 航空学报, 2017, 38(2):96-104. LIU S Y, SHEN Y Z, ZHU C L, et al. Energy dissipation mechanism of droplets impacting superhydrophobic surfaces[J]. Acta Aeronautica et Astromautica Sinica, 2017, 38(2):96-104(in Chinese).
[13] 张榛, 虞育松, 候凌云,等. 喷雾液滴与涂层壁面作用的机理性实验及其影响研究[J]. 推进技术, 2019, 40(7):1560-1567. ZHANG Z, YU Y S, HOU L Y,et al. Experimental study on mechanism of spray droplet interaction with coating wall and its influence[J]. Journal of Propulsion Technology, 2019, 40(7):1560-1567(in Chinese).
[14] 刘登, 陈国定, 方龙,等. 运动油滴/固体壁面斜碰撞的状态便是及特性分析[J]. 航空学报, 2015, 36(4):1359-1366. LIU D, CHEN G D, FANG L, et al. State identification and characteristics analysis of oil droplet's oblique impact onto solid wall[J]. Acta Aeronautica et Astromautica Sinica, 2015, 36(4):1359-1366(in Chinese).
[15] 林庆国. 空间轨控发动机高效燃烧室仿真与试验研究[D]. 长沙:国防科技大学, 2015. LIN Q G. Simulation and experiment research on the high efficient combustion chamber for space orbit maneuvering rocket engine[D]. Changsha:National University of Defense Technology, 2015(in Chinese).
[16] RYAN M G, WILLIAM K N. Fluid film distribution investigation for liquid film cooling application:AIAA-2017-4920[R]. Reston:AIAA, 2017.
[17] WATSON E J. The radial spread of a liquid jet over a horizontal plate[J]. Journal of Fluid Mechanics, 1964, 20(3):481-499.
[18] KATE R P, DAS P K, CHAKRABORTY S. Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface[J]. Journal of Fluid Mechanics, 2007, 573:247-263.
[19] KATE R P, DAS P K, CHAKRABORTY S. Effects of jet obliquity on hydraulic jumps formed by impinging circular liquid jets on a moving horizontal plate[J]. Journal of Fluids Engineering, 2009, 131:1-5.
[20] INAMURA T, YANAOKA H, TOMODA T. Prediction of mean droplet size of sprays issued from wall impingement injector[J]. AIAA Journal, 2004, 42(3):614-621.
[21] HASSON D, PECK R E. Thickness distribution in a sheet formed by impinging jets[J]. AIChE Journal, 1964, 10(5):752-754.
[22] INAMURA T, AMAGASAKI S, YANAOKA H. Thickness of liquid film formed by impinging jets on a concave wall[J]. Journal of Propulsion and Power, 2007, 23(3):612-617.
[23] MERTENS K, PUTKARADZE V, VOROBIEFF P. Morphology of a stream flowing down an inclined plane:I. Braiding[J]. Journal of Fluid Mechanics, 2005, 531:49-58
[24] WANG R X, HUANG Y, FENG X, et al. Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate[J]. Fuel, 2018, 233:84-93.