流体力学与飞行力学

空天飞行器整体式救生座舱的稳定减速与分离特性数值模拟

  • 刘愿 ,
  • 陈川 ,
  • 钱战森
展开
  • 1. 中国航空工业空气动力研究院, 沈阳 110034;
    2. 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034;
    3. 航空工业成都飞机设计研究所, 成都 510100

收稿日期: 2020-04-07

  修回日期: 2020-04-28

  网络出版日期: 2020-05-21

基金资助

航空科学基金(2017ZA7005)

Numerical simulation of stable deceleration and safe separation of integral escape module for aerospace vehicles

  • LIU Yuan ,
  • CHEN Chuan ,
  • QIAN Zhansen
Expand
  • 1. AVIC Aerodynamics Research Institute, Shenyang 110034, China;
    2. Aeronautical Science and Technology Key Lab for High Speed and High Reynolds Number Aerodynamic Force Research, Shenyang 110034, China;
    3. AVIC Chengdu Aircraft Design Institute, Chengdu 510100, China

Received date: 2020-04-07

  Revised date: 2020-04-28

  Online published: 2020-05-21

Supported by

Aeronautical Science Foundation of China (2017ZA7005)

摘要

整体式密闭救生座舱方案将座椅与驾驶舱进行整体设计,弹射后具有独立的气动型面,在包含亚声速、跨声速、超声速甚至高超声速等非常宽广的速度范围可以更好地保护飞行员免受高速气流的吹袭,是空天飞行器救生系统设计的重要途径之一。针对整体式救生座舱,首先开展基本静态气动性能数值模拟评估;之后采用一种刚性减速伞增稳方案(整体式座舱+减速伞)对其稳定性和减速效率进行改进;最后采用动态重叠网格方法,对整体式座舱+减速伞构型的近机弹射轨迹特性开展动态数值模拟计算,从而获得该构型在抛投过程中的稳定性和安全性。研究结果表明,单独整体式救生座舱难以具备静稳定性;减速伞方案可大幅改善座舱的稳定性能,使座舱在Ma=0.3~4.0范围内均具有静、动态稳定性,并呈现亚声速时随马赫数升高而增强、超声速时随马赫数升高而减弱的变化规律,且高马赫数(Ma=4.0)工况可通过降低飞行高度以增加动压的方式进一步提升座舱的动稳定性;在宽速域范围内,整体式座舱+减速伞构型经过弹射力和火箭推力的辅助作用,能够实现与机体的安全分离,并且分离后其俯仰振荡姿态均具有收敛特性。

本文引用格式

刘愿 , 陈川 , 钱战森 . 空天飞行器整体式救生座舱的稳定减速与分离特性数值模拟[J]. 航空学报, 2020 , 41(12) : 124059 -124059 . DOI: 10.7527/S1000-6893.2020.24059

Abstract

The integral escape module concept integrates the seat and the cockpit in order to obtain an independent aerodynamic configuration after ejection. A maximum protection can be offered for the crew from high-speed wind blast. Therefore, the integral escape module will be one of the important approaches for the design of the escape system for the aerospace vehicle. In this study, we first conduct numerical simulation of an integral escape module to evaluate its basic aerodynamic performance. Then a rigid brake parachute scheme is proposed to improve the stability and deceleration efficiency of the integral escape module. Finally, the unsteady computational method with a dynamic chimera grid technique is applied to the simulation of the escape process. The numerical results reveal a lack of static stability of the single integral escape module. However, both static and dynamic stability can be significantly improved by using the brake parachute combination scheme in the wide flight envelop of Ma=0.3~4.0. With the growth of Mach number, the stability increases at subsonic speed, while decreases at supersonic speed. The dynamic stability can be further improved by reducing the flying altitude to increase the dynamic pressure at high Mach numbers (e.g. Ma=4.0). In the wide flight envelope, the ejection escape trajectory of the integral escape module shows that the module combined with the brake parachute can be safely separated from the aerospace vehicle assisted by the ejection force and rocket thrust, with its attitude converging gradually.

参考文献

[1] 李锐. 航空救生装备的发展[J]. 航空科学技术, 1995, 19(1):20-23. LI Y. Development of aviation life-saving equipment[J]. Aeronautical Science & Technology, 1995, 19(1):20-23(in Chinese).
[2] 韩梦珍. 国外航空救生技术现状及展望[J]. 航空科学技术, 2003(2):22-25. HAN M Z. Present status and prospects for foreign aviation life-support technology[J]. Aeronautical Science & Technology, 2003(2):22-25(in Chinese).
[3] HUFFORD G S, HABCHI S D. Validation of CFD methodology for ejection seat applications:AIAA-94-0751[R]. Reston:AIAA, 1994.
[4] KENZAKOWSKI D C, YORK B, DASH S. Computational simulation of ejection seat aerodynamics with rocket propulsive effects:AIAA-97-2253[R]. Reston:AIAA, 1997.
[5] United States Air Force Research Laboratory. 4th generation escape system technologies demonstration phase Ⅱ Final report:MDC-97-K-0154[R]. Washington, D.C.:ARFL, 1998.
[6] ELSON M, LINGARD J S. Object orientated ejection seat model:AIAA-1997-1548[R]. Reston:AIAA, 1997.
[7] AOKI S, LEE J, MASUYA G, et al. Experimental Investigation of an Ejector-Jet[C]//Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2003:AIAA-2003-188.
[8] 张大林, 魏涛, 姜南. 弹射座椅系统外高速流场的数值模拟[J]. 南京航空航天大学学报, 2009, 41(2):202-206. ZHANG D L, WEI T, JIANG N. Numerical simulation of high speed flow field around ejection system[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(2):202-206(in Chinese).
[9] 王一丁, 童明波, 闫家益, 等. 某型飞机弹射座椅穿盖弹射试验与数值模拟[J]. 南京航空航天大学学报, 2013, 45(3):336-340. WANG Y D, TONG M B, YAN J Y, et al. Test and numerical simulation of through canopy ejection for aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(3):336-340(in Chinese).
[10] 李锋, 姚富宽. 某型飞机弹射救生分离特性仿真[J]. 飞机设计, 2016, 36(1):61-67, 73. LI F, YAO F K. Numerical simulation of ejection occupant/seat separation aerodynamic characteristics of an aircraft[J]. Aircraft Design, 2016, 36(1):61-67, 73(in Chinese).
[11] 陈德华. 高速风洞航空弹射座椅大攻角大侧滑角试验技术研究[J]. 实验流体力学与测量, 1999(13):49-53. CHEN D H. A study of experimental technology for ejection seat at high angles of attack and high angles of side-slip in the high speed wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1999(13):49-53(in Chinese).
[12] 王辉, 李力. 弹射座椅试验研究[J]. 实验流体力学与测量, 2002(3):40-45. WANG H, LI L. The research of ejection seat test[J]. Experiments and Measurements in Fluid Mechanics, 2002(3):40-45(in Chinese).
[13] 郁嘉, 林贵平, 吴铭. 弹射座椅减速性能的数值仿真计算[J]. 航空学报, 2006,27(6):1033-1038. YU J, LIN G P, WU M. Numerical simulation of deceleration performance of ejection seat[J]. Acta Aeronautica et Astronautica Sinica, 2006,27(6):1033-1038(in Chinese).
[14] 郁嘉, 林贵平, 毛晓东. 弹射救生数值仿真及不利姿态下救生性能分析[J]. 航空学报, 2010, 31(10):1927-1932. YU J, LIN G P, MAO X D. Numerical simulation of ejection seat and analysis of performance under adverse attitudes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1927-1932(in Chinese).
[15] 郁嘉, 毛晓东, 林贵平, 等. 风对弹射座椅救生性能的影响[J]. 航空学报, 2013, 34(4):727-740. YU J, MAO X D, LIN G P, et al. Impact of wind on ejection seat escape performance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):727-740(in Chinese).
[16] 刘富, 童明波, 宋杰, 等. 带稳定板装置弹射座椅偏航稳定性能研究[J]. 空气动力学学报, 2010, 28(2):203-208. LIU F, TONG M B, SONG J, et al. Research of yaw-stabilization performance of ejection seat with stabilization fins[J]. Acta Aerodynamica Sinica, 2010, 28(2):203-208(in Chinese).
[17] 吴亮, 吴铭. 火箭弹射座椅运动稳定性能数值仿真研究[J]. 科技资讯, 2015, 13(10):4, 6. WU L, WU M. Numerical simulation study on dynamic stability for rocket ejection seat[J]. Science and Technology Information, 2015, 13(10):4, 6(in Chinese).
[18] 毛晓东, 林贵平, 郁嘉. 弹射座椅不利姿态控制规律设计[J]. 北京航空航天大学学报, 2016, 42(3):426-434. MAO X D, LIN G P, YU J. Design of control law for ejection seat under adverse attitudes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):426-434(in Chinese).
[19] 张明环, 吴铭, 吴亮. 弹射座椅姿态控制算法研究[J]. 西北工业大学学报, 2015, 33(4):609-614. ZHANG M H, WU M, WU L. Researching attitude-control algorithm of ejection seats[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):609-614(in Chinese).
[20] 魏涛, 张大林. 高速气流吹袭防护气动特性的数值模拟[J]. 南京航空航天大学学报(英文版), 2009, 26(4):268-273. WEI T, ZHANG D L. Numerical simulation on aerodynamic characteristics of windblast protection at high speed[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2009, 26(4):268-273(in Chinese).
[21] 高林星. 密闭式弹射座椅气动特性分析[D]. 南京:南京航空航天大学, 2018:46-67. GAO L X. Aerodynamic analysis of ejection capsule[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:46-67(in Chinese).
[22] DONALD W, JOHNSON. Status report of a new recovery parachute system for F111 aircraft crew escape module[C]//9th Aerodynamic Decelerator and Balloon Technology Conference. Reston:AIAA, 1986:AIAA-86-2437.
[23] SHANE J S. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft:NASA CR-3916[R]. Washington, D.C.:NASA, 1985.
[24] CHARLEVILLE J L. The F-111 crew module development[C]//3rd Aerodynamic Deceleration Systems Conference. Reston:AIAA, 1970:AIAA-70-1210.
[25] 封文春, 周卫国, 关焕文. 整体座舱弹射救生技术分析[J]. 飞机工程, 2008(3):14-17. FENG W C, ZHOU W G, GUAN H W. Analysis of the integrated crew escape module ejection technology[J]. Journal of Aircraft Engineering, 2008(3):14-17(in Chinese).
[26] LI H M, REN Y J, QIAN Z S, et al. Implementation of three different transition methods and comparative analysis of the results computed by OVERSET software:AIAA-2016-3491[R]. Reston:AIAA, 2016.
[27] LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018, 79:647-657.
[28] 刘愿, 钱战森, 向先宏. 外并联式TBCC进气道模态转换风洞试验及模型典型影响因素分析[J]. 实验流体力学, 2019,33(5):18-27. LIU Y, QIAN Z S, XIANG X H. An analysis on typical influencing factors of wind tunnel experimental model of over-under TBCC inlet mode transition[J]. Journal of Experiments in Fluid Mechanics, 2019,33(5):18-27(in Chinese).
[29] LI X F, QIAN Z S. Applications of overset grid technique to CFD simulation of high Mach number multi-body interaction/separation flow[J]. Procedia Engineering, 2015, 99:458-476.
[30] 朱自强, 吴子牛, 李津, 等. 应用计算流体力学[M]. 北京:北京航空航天大学出版社, 2001:104-109. ZHU Z Q, WU Z N, LI J, et al. Application of computational fluid dynamics[M]. Beijing:Beihang University Press, 2001:104-109(in Chinese).
[31] 徐世坤. 弹射座椅中的稳定技术[J]. 航空科学技术, 1997(5):22-24. XU S K. Stabilization technology for ejection seats[J]. Aeronautical Science & Technology, 1997(5):22-24(in Chinese).
文章导航

/