The characteristics of engine-jet interference are highly significant for the design of symmetric reusable vehicles. A jet experiment under the condition of subsonic/transonic flight was performed in the wind tunnel FD-12 at China Academy of Aerospace Aerodynamics. This experiment used the normal temperature compressed air as the high temperature fuel gas of the engine-jet. Similar parameters of the experiment include geometry dimensions of the vehicle, flight Mach number of the vehicle, Mach number of the exit on the engine nozzle, and the static pressure ratio of the engine nozzle exit to the faraway inflow. Experimental results show that the engine-jet effect on the aerodynamic characteristics of the vehicle and the hinge moment of the body flap varies with the Mach number of inflow, the deflection angle of the nozzle, and the body flap.
[1] 龙乐豪, 李平岐, 秦旭东, 等. 我国航天运输系统60年发展回顾[J]. 宇航总体技术, 2018, 2(2):2-4. LONG L H, LI P Q, QIN X D, et al. The review on China space transportation system of past 60 years[J]. Astronautical Systems Engineering Technology, 2018, 2(2):2-4(in Chinese).
[2] 崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2):28-34. CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(2):28-34(in Chinese).
[3] ANDREWS J. RLV design issues for future commercial space applications[C]//AIAA Space 2000 Conference and Exhibit. Reston:AIAA, 2000.
[4] 杨勇, 王小军, 唐一华, 等. 重复使用运载器发展趋势及特点[J]. 导弹与航天运载技术, 2002, 259:15-18. YANG Y, WANG X J, TANG Y H, et al. Development trends and characteristics of reusable launch vehicles[J]. Missiles and Space Vehicles, 2002, 259:15-18(in Chinese).
[5] 鲁宇, 蔡巧言, 王飞. 临近空间与重复使用技术研究[J]. 导弹与航天运载技术, 2018, 36:2-4. LU Y, CAI Q Y, WANG F. Near space and reusable technology[J]. Missiles and Space Vehicles, 2018, 36:2-4(in Chinese).
[6] 龙乐豪, 蔡巧言, 王飞, 等. 重复使用航天运输系统发展与展望[J]. 科技导报, 2018,36(10):84-92. LONG L H, CAI Q Y, WANG F, et al. Development of reusable space transportation technologies[J]. Science and Technology Review, 2018,36(10):84-92(in Chinese).
[7] 赵鹤书, 王强. 火箭及导弹的底阻计算方法及其CRMBP程序[J]. 北京航空航天大学学报, 1993,1:27-33. ZHAO H S, WANG Q. Computational method for base pressure of missiles and the brief of its CRMBP code[J]. Journal of Beijing University of Aeronautics and Astronautics, 1993,1:27-33(in Chinese).
[8] 李国良, 杨云军, 龚安龙, 等. 发动机喷流对飞行器底部流动影响数值模拟[J]. 宇航学报, 2018, 39(1):89-96. LI G L, YANG Y J, GONG A L, et al. Numerical simulation of the effect of engine jet on the base flow of vehicle[J]. Journal of Astronautics, 2018, 39(1):89-96(in Chinese).
[9] 彭小波. 美国航天飞机的设计与实现[M]. 北京:中国宇航出版社, 2015:6-12. PENG X B. Design and realization of American space shuttle[M].Beijing:China Astronautic Publishing House, 2015:6-12(in Chinese).
[10] 段卓毅. X系列飞行器概览[M]. 北京:航空工业出版社, 2017:617-629, 663-680. DUAN Z Y. Review of X-series vehicle[M].Beijing:Aviation Industry Press, 2017:617-629, 663-680(in Chinese).
[11] 刘杰平,杜志博,蔡巧言,等. 发动机喷流对体襟翼干扰的数值模拟[J]. 气体物理, 2019, 4(3):11-16. LIU J P, DU Z B, CAI Q Y, et al. Numerical simulation of the engine-jets interaction with body flap[J]. Physics of Gases, 2019, 4(3):11-16(in Chinese).
[12] 杨道伟. 发动机尾喷流对飞行器空气动力的影响[J]. 兵工学报,1985(1):45-50. YANG D W. The effect of the engine discharging jet on the aerodynamic performance of vehicles[J]. Acta Armamentarii, 1985(1):45-50(in Chinese).
[13] PAMADI B N. Experimental and theoretical studies of axisymmetric free jets:NASA-TR-R-6[R]. Washington, D.C.:NASA,1975.
[14] ASHER S. Jet simulation techniques, simulation of temperature effects by altering gas composition:AEDC-TR-78-43[R]. 1979.
[15] Effects of jet exhaust gas properties on exhaust simulation and afterbody drag:NASA-TR-R-444[R]. Washington, D.C.:NASA,1975.
[16] 董月娟. 超音速复杂组合体减阻技术——喷流有益干扰[J].战术导弹技术, 1990(1):10-18. DONG Y J. Drag reduction for complicated supersonic combination body-profitable exhaust interference[J]. Tactical Missile Technology, 1990(1):10-18(in Chinese).
[17] DILL C C, YOUNG J C, ROBERTS B B, et al. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development:NASA 85 N16906[R]. Washington, D.C.:NASA,1985.
[18] HOLLAND S D, WOODS W C, ENGELUND W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6):11-12.
[19] 许晓斌,舒海峰,徐筠,等. 升力体飞行器尾喷流模拟气动力试验方法研究[J]. 空气动力学学报, 2016, 34(1):86-90. XU X B, SHU H F, XU Y, et al. Experimental investigation on lifting body aerodynamic force with simulated aft-body jet[J]. Acta Aerodynamics Sinica, 2016, 34(1):86-90(in Chinese).
[20] 李建强,李耀华,郭旦平,等. 2.4米跨声速风洞推力矢量试验技术[J]. 空气动力学学报, 2016, 34(1):20-26. LI J Q, LI Y H, GUO D P, et al. The thrust vectoring experiment technique in the 2.4 m×2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):20-26(in Chinese).
[21] 王发祥. 高速风洞试验[M]. 北京:国防工业出版社, 2003. WANG F X. High speed wind tunnel test[M]. Beijing:National Defense Industry Press, 2003(in Chinese).