论文

空间机器人抓捕目标后的载荷分配

  • 周逸群 ,
  • 罗建军 ,
  • 王明明
展开
  • 1. 西北工业大学 深圳研究院, 深圳 518057;
    2. 西北工业大学 航天动力学国家重点实验室, 西安 710072

收稿日期: 2020-02-29

  修回日期: 2020-03-23

  网络出版日期: 2020-05-21

基金资助

深圳市科技研发资金(JCYJ20190806154412671);国家自然科学基金(61973256,61690211);西北工业大学博士论文创新基金(CX202001)

Load distribution for space robots after target capture

  • ZHOU Yiqun ,
  • LUO Jianjun ,
  • WANG Mingming
Expand
  • 1. Research&Development Institute, Northwestern Polytechnical University, Shenzhen, Shenzhen 518057, China;
    2. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-02-29

  Revised date: 2020-03-23

  Online published: 2020-05-21

Supported by

Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20190806154412671); National Natural Science Foundation of China (61973256, 61690211);Innovation Fundation for Doctor Dissertation of Northwestern Polytechnical University (CX202001)

摘要

针对多臂空间机器人以软指接触形式抓捕目标后的情形,提出了一种综合考虑摩擦约束及机械臂能力约束的目标期望合外力的载荷分配方法。首先,建立空间机器人系统与目标的动力学方程,作为载荷分配问题的基础。然后,在地面机器人相关研究的基础上,建立机械臂末端与目标表面的软指接触模型,并建立二者之间的运动约束关系。为简化优化计算,将摩擦锥约束线性化,并建立考虑关节扭矩限制的机械臂能力约束,从而将抓捕力优化的非线性规划问题转化为线性规划问题。最后,采用双臂空间机器人模型进行数值仿真,表明所提方法针对目标各种形式运动进行载荷分配的有效性。

本文引用格式

周逸群 , 罗建军 , 王明明 . 空间机器人抓捕目标后的载荷分配[J]. 航空学报, 2021 , 42(1) : 523915 -523915 . DOI: 10.7527/S1000-6893.2020.23915

Abstract

This paper proposes a load distribution method of the desired target external force for the multi-arm space robot after capturing the target in the form of soft-finger contact, which considers both the friction constraint and capability constraint of the manipulators. The dynamic equations of the space robotic system and the target are first constructed as the basis of load distribution. The soft-finger contact model between the end-effector of manipulators and the target surface is then established based on the research of ground robots, while the motion constraint between the two is also obtained. To simplify the optimization calculation, the friction cone constraint is linearized, and the capability constraint of manipulators considering the joint torque limit is established to transform the nonlinear optimization problem of the grasping force planning into a linear one. Finally, the numerical simulation of a dual-arm space robot model shows the effectiveness of the proposed method of load distribution for various forms of target motion.

参考文献

[1] IMAIDA T, YOKOKOHJI Y, DOI T, et al. Ground-space bilateral teleoperation of ETS-VⅡ robot arm by direct bilateral coupling under 7-s time delay condition[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3):499-511.
[2] NILCHIANI R, HASTINGS D E. Measuring the value of flexibility in space systems:A six-element framework[J]. Systems Engineering, 2007, 10(1):26-44.
[3] 陈罗婧, 郝金华, 袁春柱, 等. "凤凰"计划关键技术及其启示[J]. 航天器工程, 2013, 22(5):119-128. CHEN L J, HAO J H, YUAN C Z, et al. Key technology analysis and enlightenment of phoenix program[J]. Spacecraft Engineering, 2013, 22(5):119-128(in Chinese).
[4] REINTSEMA D, THAETER J, RATHKE A, et al. DEOS-the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbits[C]//Proceedings of the i-SAIRAS. Sapporo:Japan Aerospace Exploration Agency (JAXA), 2010:244-251.
[5] 王明, 黄攀峰, 孟中杰,等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9):3165-3175. WANG M, HUANG P F, MENG Z J, et al. Attitude takeover control after capture of target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3165-3175(in Chinese).
[6] ALBERTS T E, SOLOWAY D I. Force control of a multi-arm robot system[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1988:1490-1496.
[7] WALKER I D, FREEMAN R A, MARCUS S I. Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators[J]. The International Journal of Robotics Research, 1991, 10(4):396-409.
[8] BONITZ R G, HSIA T C. Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1994:1521-1527.
[9] CHUNG J H, YI B J, KIM W K. Analysis of internal loading at multiple robotic systems[J]. Journal of Mechanical Science and Rechnology, 2005, 19(8):1554-1567.
[10] KUMAR V R, WALDRON K J. Force distribution in closed kinematic chains[J]. IEEE Journal on Robotics and Automation, 1988, 4(6):657-664.
[11] YOSHIKAWA T, NAGAI K. Manipulating and grasping forces in manipulation by multifingered robot hands[J]. IEEE Transactions on Robotics and Automation, 1991, 7(1):67-77.
[12] WILLIAMS D, KHATIB O. The virtual linkage:A model for internal forces in multi-grasp manipulation[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1993:1025-1030.
[13] ERHART S, HIRCHE S. Internal force analysis and load distribution for cooperative multi-robot manipulation[J]. IEEE Transactions on Robotics, 2015, 31(5):1238-1243.
[14] NAKAMURA Y, NAGAI K, YOSHIKAWA T. Dynamics and stability in coordination of multiple robotic mechanisms[J]. The International Journal of Robotics Research, 1989, 8(2):44-61.
[15] BUSS M, HASHIMOTO H, MOORE J B. Dextrous hand grasping force optimization[J]. IEEE Transactions on Robotics and Automation, 1996, 12(3):406-418.
[16] 王滨, 李家炜, 刘宏. 机器人多指手的优化抓取力计算[J]. 吉林大学学报(工学版), 2008, 38(1):178-182. WANG B, LI J W, LIU H. Optimal grasping force computation for multi-fingered robot hand[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(1):178-182(in Chinese).
[17] BORGSTROM P H, BATALIN M A, SUKHATME G S, et al. Weighted barrier functions for computation of force distributions with friction cone constraints[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2010:785-792.
[18] CORNELLA J, SUAREZ R, CARLONI R, et al. Dual programming based approach for optimal grasping force distribution[J]. Mechatronics, 2008, 18(7):348-356.
[19] 陈栋金, 姜力, 王新庆. 多指抓取力的线性组合计算[J]. 哈尔滨工业大学学报, 2013, 45(1):55-59. CHEN D J, JIANG L, WANG X Q. Computation of multi-fingered grasping force with linear combination[J]. Journal of Harbin Institute of Technology, 2013, 45(1):55-59(in Chinese).
[20] 陈金宝, 韩冬, 王小涛, 等. 灵巧机械手多指协调控制技术[J]. 机械工程学报, 2014, 50(5):42-47. CHEN J B, HAN D, WANG X T, et al. Multi-fingered coordinated control for dexterous robotic hand[J]. Journal of Mechanical Engineering, 2014, 50(5):42-47(in Chinese).
[21] 王新庆, 陈栋金, 姜力. 非负线性组合多指抓取动态力优化方法[J]. 广西大学学报(自然科学版), 2015, 40(5):1169-1176. WANG X Q, CHEN D J, JIANG L. Nonnegative linear combination dynamic force optimization of multi-fingered grasp[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(5):1169-1176(in Chinese).
[22] KERR J, ROTH B. Analysis of multifingered hands[J]. The International Journal of Robotics Research, 1986, 4(4):3-17.
[23] SINHA P R, ABEL J M. A contact stress model for multifingered grasps of rough objects[J]. IEEE Transactions on Robotics and Automation, 1992, 8(1):7-22.
[24] BARKAT B, ZEGHLOUL S, GAZEAU J P. Optimization of grasping forces in handling of brittle objects[J]. Robotics and Autonomous Systems, 2009, 57(4):460-468.
[25] JIA P, WU L, WANG G, et al. Grasping torque optimization for a dexterous robotic hand using the linearization of constraints[J/OL]. Mathematical Problems in Engineering.(2019-11-23)[2020-02-29]. https://doi.org/10.1155/2019/5235109.
[26] CLOUTIER A, YANG J. Grasping force optimization approaches for anthropomorphic hands[J]. Journal of Mechanisms and Robotics, 2018, 10(1):011004.
[27] XIA P C, LUO J J, WANG M M, et al. Constrained compliant control for space robot postcapturing uncertain target[J]. Journal of Aerospace Engineering, 2019, 32(1):04018117.
[28] MEHROTRA, SANJAY. On the Implementation of a primal-dual interior point method[J]. SIAM Journal on Optimization, 1992, 2(4):575-601.
文章导航

/