流体力学与飞行力学

气流速度振荡场中幂律液膜不稳定性分析

  • 姚慕伟 ,
  • 贾伯琦 ,
  • 杨立军 ,
  • 富庆飞
展开
  • 北京航空航天大学 宇航学院, 北京 102206

收稿日期: 2020-02-12

  修回日期: 2020-05-07

  网络出版日期: 2020-05-21

基金资助

国家自然科学基金(11922201,11872091)

Instability of power-law liquid sheets in presence of gas velocity oscillations

  • YAO Muwei ,
  • JIA Boqi ,
  • YANG Lijun ,
  • FU Qingfei
Expand
  • School of Astronautics, Beihang University, Beijing 102206, China

Received date: 2020-02-12

  Revised date: 2020-05-07

  Online published: 2020-05-21

Supported by

National Natural Science Foundation of China (11922201,11872091)

摘要

采用线性稳定性分析研究了处于气流速度振荡场中幂律液膜时间模式的不稳定性。振荡的气流速度导致动量方程为含有时间周期系数的希尔方程,采用Floquet理论进行求解。详细研究了不同振荡幅值和振荡频率下表观雷诺数、幂律指数及无量纲速度因子对各不稳定区间的影响。结果表明:振荡幅值的增加或振荡频率的减小会使液膜不稳定区域的个数增加,且Kelvin-Helmholtz(K-H)不稳定区域的最大增长率、主导波数和截止波数随振荡幅值和振荡频率的增加而增加;表观雷诺数、幂律指数和无量纲速度因子的增加增强了K-H不稳定区域内的不稳定性,使参数不稳定区域内的增长率先减小后增加;振荡幅值的变化不改变最大增长率发生转折时对应的流变参数,而当振荡频率较小时,幂律指数和无量纲速度因子的增加却使最大增长率单调增加。

本文引用格式

姚慕伟 , 贾伯琦 , 杨立军 , 富庆飞 . 气流速度振荡场中幂律液膜不稳定性分析[J]. 航空学报, 2020 , 41(11) : 123873 -123873 . DOI: 10.7527/S1000-6893.2020.23873

Abstract

Temporal instability analysis of a power-law sheet in a gas velocity oscillation field was performed with linear stability analysis. The oscillation of gas velocity induced the momentum equation to be a Hill equation with a time period coefficient, which was solved using Floquet theory. For different oscillation amplitudes and frequencies, the effects of the generalized Reynolds number, power-law index and dimensionless velocity factor on various unstable regions were studied. Results show that the increase of the oscillation amplitude or the decrease of the oscillation frequency will increase the number of unstable regions of the sheet, and the maximum growth rate, dominant wave number and cut-off wave number of the Kelvin-Helmholtz (K-H) unstable region increase with the increase of the oscillation amplitude and frequency. The increase in generalized Reynolds number, power-law index and dimensionless velocity factor enhances the instability of the K-H unstable region, causing the growth rate in the parametric instability region to decrease first and then increase. The variations of the oscillation amplitude do not change the rheological parameters corresponding to the transition of the maximum growth rate. When the oscillation frequency is small, the increase of power-law index or dimensionless velocity factor leads to monotonous increase of the maximum growth rate in the parametric instability region.

参考文献

[1] SQUIRE H B. Investigation of the instability of a moving liquid film[J]. British Journal of Applied Physics, 1953, 4:167-169.
[2] DOMBROWSKI N, JOHNS W R. The aerodynamic instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18:203-214.
[3] LIN S P, LIAN Z W, CREIGHTON B J. Absolute and convective instability of a viscous liquid sheet[J]. Journal of Fluid Mechanics, 1990, 220:673-689.
[4] LI X, TANKIN R S. On the temporal instability of a two-dimensional viscous liquid sheet[J]. Journal of Fluid Mechanics, 1991, 226:425-443.
[5] LI X. Spatial instability of plane liquid sheet[J]. Chemical Engineering Science, 1993, 48:2973-2981.
[6] BARRERAS F, LOZANO A, DOPAZO C. Viscous linear instability analysis of the viscous longitudinal perturbation on an air-blasted liquid sheet[J]. Atomization and Sprays, 2001, 11:139-154.
[7] DOMBROWSKI N, HOOPER P C. The effect of ambient density on drop formation in sprays[J]. Chemical Engineering Science, 1962, 17(4):291-305.
[8] IBRAHIM E A, JACKSON S L. Spatial instability of a liquid sheet in a compressible gas[J]. Journal of Colloid and Interface Science, 1996, 180(2):629-631.
[9] SUJITH R I. An experimental investigation of interaction of sprays with acoustic fields[J]. Experiments in Fluids, 2005, 38(5):576-587.
[10] SIVADAS V, FERNANDES E C, HEITOR M V. Acoustically excited air-assisted liquid sheets[J]. Experiments in Fluids, 2003, 34(6):736-743.
[11] YANG L, JIA B, FU Q, et al. Stability of an air-assisted viscous liquid sheet in the presence of acoustic oscillations[J]. European Journal of Mechanics:B Fluids, 2018, 67:366-376.
[12] JIA B, XIE L, CUI X, et al. Linear stability of confined coaxial jets in the presence of gas velocity oscillations with heat and mass transfer[J]. Physics of Fluids, 2019, 31:092101.
[13] SIVADAS V, HEITOR M V. Visualization studies of an acoustically excited liquid sheet[J]. Annals of the New York Academy of Science, 2002, 972:292-298.
[14] MULMULE A S, TIRUMKUDULU M S. Liquid sheet instability in the presence of acoustic forcing[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA, 2007.
[15] TIRUMKUDULU M S, MULMULE A S, RAMAMURTHI K. Stability of a thin radially moving liquid sheet in the presence of acoustic excitation[C]//International Congress of Theoretical and Applied Mechanics. Adelaide:[s.n.], 2008.
[16] MULMULE A S, TIRUMKUDULU M S, RAMAMU-RTHI K. Instability of a moving liquid sheet in the presence of acoustic forcing[J]. Physics of Fluids, 2010, 22(2):022101.
[17] JIA B Q, XIE L, YANG L J, et al. Linear instability of viscoelastic planar liquid sheets in the presence of gas velocity oscillations[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 273:104169.
[18] KUMAR K, TUCKERMAN L S. Parametric instability of the interface between two fluids[J]. Journal of Fluid Mechanics, 1994, 279(1):49-68.
[19] 常青. 幂律流体射流破碎机理的理论与实验研究[D].天津:天津大学, 2014:44-46. CHANG Q. Theoretical and experimental study on the breakup mechanisms of power law liquid jets[D]. Tianjin:Tianjin University, 2014:44-46(in Chinese).
[20] WANG Y B, GUO J P, BAI F Q, et al. Influence of bounded and compressible gas medium on the instability of an annular power-law liquid jet[J]. Atomization and Sprays, 2018, 28(5):389-402.
[21] DIGHE S, GADGIL H. Atomization of acoustically forced liquid sheets[J]. Journal of Fluid Mechanics, 2019, 880:653-683.
文章导航

/