固体力学与飞行器总体设计

飞行器典型结构的热适配分体螺栓连接技术

  • 谭志勇 ,
  • 张中原 ,
  • 郑日恒 ,
  • 占续军 ,
  • 徐聪
展开
  • 1. 北京临近空间飞行器系统工程研究所 空间物理重点实验室, 北京 100076;
    2. 北京航空航天大学 能源与动力工程学院, 北京 100083

收稿日期: 2020-04-04

  修回日期: 2020-04-23

  网络出版日期: 2020-05-14

基金资助

国防基础科研项目(192ZKJ11004,JSZL2019203B003)

Connection technique for thermal adaptive bolts with split-piece design in typical vehicle structures

  • TAN Zhiyong ,
  • ZHANG Zhongyuan ,
  • ZHENG Riheng ,
  • ZHAN Xujun ,
  • XU Cong
Expand
  • 1. Key Laboratory of Science and Technology on Space Physics, Beijing Institute of Near-Space Aircraft Systems Engineering, Beijing 100076, China;
    2. School of Energy and Power Engineering, Beihang University, Beijing 100083, China

Received date: 2020-04-04

  Revised date: 2020-04-23

  Online published: 2020-05-14

Supported by

Defense Industrial Technology Development Program(192ZKJ11004,JSZL2019203B003)

摘要

由于复合材料与高温合金的热膨胀系数差异,导致在高温环境下采用高温合金机械连接件的复合材料组合构件发生预紧力降低。为解决高超声速飞行器热部件的连接难点、保证热结构的高温可靠性,对复合材料部件与高温合金螺栓的连接进行了研究。对一种采用分体式热适配螺栓的方法进行了相关的理论推导,采用典型单元进行的数值模型仿真表明了结果趋势的一致性良好。采用C/SiC局部端框的典型试验表明,这种新的连接设计在不改变以往常规连接强度性能的情况下,可以将820℃条件下的高温剩余预紧力由大约14%有效提升至80%。

本文引用格式

谭志勇 , 张中原 , 郑日恒 , 占续军 , 徐聪 . 飞行器典型结构的热适配分体螺栓连接技术[J]. 航空学报, 2020 , 41(8) : 224062 -224062 . DOI: 10.7527/S1000-6893.2020.24062

Abstract

The pre-tightening axial force of combined composite parts connected mechanically by high-temperature alloy bolts will be reduced in high temperature environments because of different thermal expansion coefficients between composite materials and high-temperature alloys. To overcome the difficulty of connection for hypersonic vehicles and ensure the reliability of thermal structures in high temperature environments, the connection between composite material parts and high-temperature alloy bolts is investigated in this paper. The theoretical formula of a certain type of thermal adaptive bolt with split-piece design is derived, and the consistent result is obtained by numerical model simulation. It is proved, by the typical partial end-frame test, that the residual pre-tightening axial force at high temperature can be improved effectively from about 14% to 80% at 820 ℃, under the condition that the mechanical connection strength of this new design method is the same as that of the former ordinary connection.

参考文献

[1] 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1):39-48. LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48(in Chinese).
[2] 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7):1759-1775. MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaes[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1759-1775(in Chinese).
[3] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京:北京航空航天大学出版社, 2015:73-80. ZHAO L B, XU J F. Analysis method for connection structure of advanced composite materials[M]. Beijing:Beihang University Press, 2015:73-80(in Chinese).
[4] 张岐良, 曹增强. 复合材料螺栓性能的影响因素研究[J]. 航空学报, 2012, 33(4):755-762. ZHANG Q L, CAO Z Q. Study on factors influencing the performance of composite bolted connections[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):755-762(in Chinese).
[5] ZHANG Q, LI G. A review of the application of C/SiC composite in thermal protection system[J]. Multidiscpline Modeling in Materials and Structures, 2009, 5(2):199-203.
[6] LI G, ZHANG Y, ZHANG C, et al. Design, preparation and properties of online joints of C/SiC-C/SiC with pins[J]. Composites Part B:Engineering, 2013, 48(1):134-139.
[7] BARILE C, CASAVOLA C, DE C F. Mechanical comparison of new composite materials for aerospace applications[J]. Composites Part B:Engineering, 2019, 162(4):122-128.
[8] 闵昌万, 谭志勇, 龙丽平. C/C复合材料螺栓在拧紧力矩条件下的力学性能研究[J]. 强度与环境, 2012, 39(3):1-6. MIN C W, TAN Z Y, LONG L P. The mechanical behavior research of C/C composite bolt with Tightening torque[J]. Structure and Environment Engineering, 2012, 39(3):1-6(in Chinese).
[9] 刘杰, 李海滨, 刘小瀛. 3D针刺C/SiC复合材料螺栓的低成本制备及力学性能[J]. 航空学报, 2013, 34(7):1724-1730. LIU J, LI H B, LIU X Y. Low cost preparation and mechanical property of three-dimensional needled C/SiC bolts[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1724-1730(in Chinese).
[10] ZHANG Y F, ZHOU Z G, TAN Z Y. Experimental and finite element research on the failure mechanism of C/C composite joint structures under out-of-plane loading[J]. Materials, 2019, 12(18):1-16.
[11] LI G, WU X, ZHANG C, et al. Theoretical simulation and experimental verification of C/SiC joints with pins or bolts[J]. Materials and Design, 2014, 53(1):1071-1076.
[12] 中国航空研究院. 复合材料结构设计手册[M]. 北京:航空工业出版社, 2001:145-156. Chinese Institute of Aeronautics. Design handbook of composite structure[M]. Beijing:Aviation Industry Press, 2001:145-156(in Chinese).
[13] 刘福林. 工作温度与预紧温度相差较大时紧螺栓联接的预紧[J]. 机械, 1995, 22(3):25-26,30. LIU F L. Pre-tightening of bolted connections when the working temperature is quite different from pre-tightening temperature[J]. Mechanics, 1995, 22(3):25-26,30(in Chinese).
[14] 管建军, 孙一伦, 张大群, 等. 高温下工作螺栓预紧状态变化研究及应对措施[J]. 轻工机械, 2013, 31(5):104-107. GUAN J J, SUN Y L, ZHANG D Q, et al. Research on pre-tightened status' change of bolt under high temperature and countermeasures[J]. Light Industry Machinery, 2013, 31(5):104-107(in Chinese).
[15] WULZ H G. Joining, fastening and sealing of hot CMC structures[C]//33rd Thermophysics Conference.Reston:AIAA, 1999:35-52.
[16] 谭志勇, 费庆国, 吴宏伟, 等. 复合材料与高温合金螺栓连接的热适配技术[J]. 东南大学学报(自然科学版), 2017, 47(2):337-342. TAN Z Y, FEI Q G, WU H W, et al.Thermal adaptive technique for connecting composite material and high-temperature alloy bolt[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(2):337-342(in Chinese).
[17] 张中原, 谭志勇, 占续军, 等. 热适配螺栓连接及其配合界面位置影响分析[J]. 强度与环境, 2019, 46(1):35-41. ZHANG Z Y, TAN Z Y, ZHAN X J, et al. Analysis for thermal adaptive bolt connection and influence of coordination interface position[J]. Structure & Environment Engineering, 2019, 46(1):35-41(in Chinese).
[18] BÖHRK H, BEYERMANN U. Secure tightening of a CMC fastener for the heat shield of re-entry vehicles[J]. Composite Structures, 2010, 92(1):107-112.
[19] TRABANDT U, SCHMID T, WULZ H G. CMC nose skirt panels combined with metallic fasteners, a new TPS technology for X-38 and CRV[C]//51st International Astronautical Congress, 2000:1-7.
[20] COMAN C D. Numerical analysis for the influence of the geometrical and mechanical parameters on the stiffness and strength of the composite bolted joints[J]. INCAS Bulletin, 2018, 10(4):21-33.
[21] CHISHTI M, WANG C H, THOMSON R S, et al. Experimental investigation of damage progression and strength of countersunk composite joints[J].Composite Structures, 2012, 94(3):865-873.
文章导航

/