综述

战斗机推力矢量关键技术及应用展望

  • 王海峰
展开
  • 中国航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2020-04-03

  修回日期: 2020-04-28

  网络出版日期: 2020-05-14

Key technologies and future applications of thrust vectoring on fighter aircraft

  • WANG Haifeng
Expand
  • AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2020-04-03

  Revised date: 2020-04-28

  Online published: 2020-05-14

摘要

战斗机推力矢量技术可极大地扩展战斗机使用包线,提升飞行安全性,增强飞机作战能力,是航空领域的重要关键技术,是先进战斗机的典型标志之一。该技术涉及气动、进排气、发动机和飞行控制等多个领域,其综合实现是一项跨领域、紧耦合、高风险的系统工程。本文回顾了战斗机推力矢量技术的发展历程,分析了关键技术体系,结合中国首架轴对称推力矢量验证机的工程实践,阐述了大迎角内外流气动设计、推力矢量发动机、综合飞/发控制和战斗机过失速机动飞行验证等关键技术,展望了推力矢量技术对作战效能的贡献及未来的应用方向。

本文引用格式

王海峰 . 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020 , 41(6) : 524057 -524057 . DOI: 10.7527/S1000-6893.2020.24057

Abstract

Thrust vectoring can significantly expand the operational envelope of fighter aircraft and improve their flight safety and combat capabilities. A key technology in aerospace study and one of the typical features of advanced fighter aircraft, thrust vectoring involves multiple fields such as aerodynamics, air intake/exhaust, engines, and flight control. The integrated implementation of thrust vectoring is an interdisciplinary, closely-coupled and high-risk systematic project. This paper reviews the development of fighter aircraft thrust vectoring with an analysis of its key technologies. Based on the engineering practice of the first axial-symmetric thrust vectoring demonstrator in China, this paper elaborates the research on high angle of attack aerodynamic design for internal and external airflow, thrust vectoring engines, integrated flight and propulsion control and post-stall maneuvering flight test verification of fighter aircraft and other related key technologies. Finally, the contribution of thrust vectoring technology to the combat effectiveness of fighter aircraft is summarized and its future applications predicted.

参考文献

[1] RICHEY G K, BERRIER B L, PALCZA J L.Two-dimensional nozzle/airframe integration technology-An overview[C]//AIAA/SAE 13th Propulsion Conference.Reston:AIAA,1977.
[2] 肖中云,江雄,牟斌,等.流体推力矢量技术研究综述[J].实验流体力学,2017,31(4):8-15. XIAO Z Y,JIANG X,MOU B,et al.Advances influidie thrust vectoring technique research[J].Journal of Experiments in Fluid Mechanics, 2017,31(4):8-15(in Chinese).
[3] 朱纪洪. 飞机超机动状态动力学特征及对控制系统的挑战[J]. 控制理论与应用,2014, 31(12):1650-1662. ZHU J H. Dynamic characteristics and challenges for control system of super-maneuverable aircraft[J].Control Theory & Applications, 2014, 31(12):1650-1662(in Chinese).
[4] HERBST W B.Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8):561-566.
[5] COSTES P. Investigation of thrust vectoring and post-stall capability in air combat:AIAA-1998-893[R]. Reston:AIAA,1988.
[6] KLEIN V, NODERER K D. Modeling of aircraft unsteady aerodynamic characteristics. Part 1-Postulated models:NASA-TM-109120[R]. Washington, D.C.:NASA, 1994.
[7] KLEIN V, NODERER K D. Modeling of aircraft unsteady aerodynamic characteristics. Part 2- Parameters estimated from wind tunnel data:NASA-TM-110161[R].Washington, D.C.:NASA, 1995.
[8] KLEIN V, NODERER K D. Modeling of aircraft unsteady aerodynamic characteristics. Part 3-Parameters estimated from flight data:NASA-TM-110259[R].Washington, D.C.:NASA,1996.
[9] CHIN S, LAN C E. Fourier fuctional analysis for unsteady aerodynamic modeling:AIAA-1991-2867[R]. Reston:AIAA, 1991.
[10] GOMAN M G, KHRABROV A N. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994,31(5):1109-1115.
[11] MURMAN S M.Numerical simulation of the flow about the F-18 HARV at high angle of attack:NASA-CR-196396[R].Washington,D.C.:NASA, 1994.
[12] KNOXFRED D.X-31 flight test update[C]//1992 Aerospace Design Conference.Reston:AIAA,1992
[13] 李周复.风洞特种试验技术[M].北京:航空工业出版社,2010:50-57. LI Z F.Special wind tunel test technology[M].Beijing:Aviation Industrial Press, 2010:50-57(in Chinese).
[14] 贾毅,郑芳,黄浩,等.低速风洞推力矢量试验技术研究[J]. 实验流体力学,2014,28(6):92-97. JIA Y,ZHENG F,HUANG H,et al.Research on vectoring thrust test technology in low-speed wind tunnel[J].Journal of Experiments in Fluid Mechanics, 2014,28(6):92-97(in Chinese).
[15] 孙海生,张海酉,刘志涛.大迎角非定常气动力建模方法研究[J].空气动力学学报,2011,29(6):733-737. SUN H S,ZHANG H Y,LIU Z T.Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011,29(6):733-737(in Chinese).
[16] SMITH K L, BERNIE KERR W, HARTMANN G L,et al. Aircraft control integration methodology and performance impact[C]//AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference. Reston:AIAA,1985
[17] 黄盈. 飞行/推进综合控制系统优化设计方法研究[D]. 南昌:南昌航空大学, 2012. HUANG Y.Optimization design method study for integrated flight/propulsion control system[D] Nanchang:Nanchang Hangkong University, 2012(in Chinese).
[18] 陈可, 张海波. 基于Simulink的飞/发综合系统建模与故障诊断研究[J]. 伺服控制, 2014,4(2):39-43. CHEN K,ZHANG H B. Study on simulink-based flight/propulsion integrated system modeling and fault diagnosis[J] Servo Control,2014,4(2):39-43(in Chinese).
[19] 叶菲姆·戈登,德米特里·科米萨洛夫.苏联与当代俄罗斯试验飞机[M].刘选民, 译. 西安:西北工业大学出版社,2012. GORDON Y, KOMISSAROV D. Soviet and Russian testbed aircraft[M]. LIU X M, translate. Xi'an:Northwestern Polytechnical University Press, 2012(in Chinese).
[20] 向欢.某战斗机快速俯仰机动下的进气道动态特性[C]//中国航空学会飞机总体分会第十四次学术交流会,2018. XIANG H. The inlet dynamic characteristics under aircraft rapid pitching maneuver[C]//The 14th Academic Symposium of Aircraft Geeral Design, Chinese Society of Aeronautics and Astronautics,2018.
[21] BIHRLE W J, BARNHART B. Spin prediction techniques[J]. Journal of Aircraft, 1983, 20(2):97-101.
[22] 李林刚,高浩. 飞机大迎角气动数据的组成与应用[J]. 飞行力学, 1997,15(1):1-7. LI L G,GAO H. Aero datas integration and application of the airplane at high angle of attack[J]. Flight Dynamics,1997, 15(1):1-7(in Chinese).
[23] BIEDRON R T. Comparison of ANSER control device predictions with harv flight tests[C]//Proceedings of the NASA High-Angle-of-Attack Technology Conference, 1997.
[24] STEPHAN M H, EDWIN V D W, UDO T, et al. X-31A VECTOR high angle of attack descent euler and Navier-Stokes simulations of unsteady maneuvers[C]//ICAS 2002,2002.
[25] MEHDI G, ALEXANDER D H K,ADAM J, et al.Validation of CFD simulations for X-31 wind tunnel models[C]//52nd Aerospace Sciences Meeting. Reston:AIAA,2014.
[26] 王海峰,杨朝旭,王成良. 先进战斗机大迎角运动特性分析和试验[J].飞行力学,2006,24(2):5-8. WANG H F,YANG C X,WANG C L. High angles of attack character analysis and test for an advanced fighter[J]. Flight Dynamics, 2006,24(2):5-8(in Chinese).
[27] GEROLD T, FRIEDRICH O, EVANS J, et al. Calculation of complex three-dimensional configurations employing the DLR-TAU-Code:AIAA-1997-0167[R]. Reston:AIAA, 1997
[28] HARKEGARD O. Dynamic control allocation using constrained quadratic programming[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1028-1034.
[29] 艾尔,王衍洋,屈香菊. 气动/推力矢量控制面融合方式研究[J]. 飞行力学, 2005,23(4):20-24. AI E,WANG Y Y,QU X J. An analysis on the combination of aero/thrust vector control surfaces[J]. Flight Dynamics,2005,23(4):20-24(in Chinese).
[30] LANE S H, STENGEL R F. Flight control design using nonlinear inverse dynamics[C]//1986 American Control Conference, 1986.
[31] 朱恩, 郭锁凤, 陈传德. 超机动飞机的非线性动态逆控制[J]. 航空学报, 1998, 19(1):45-49. ZHU E,GUO S F,CHEN C D.Nonlinear dynamic inversion control for super-maneuvering aircraft[J].Acta Aeronautica et Astronautica Sinica, 1998,19(1):45-49(in Chinese).
[32] 张力,王立新.推力矢量飞机控制律设计及过失速机动仿真研究[J]. 飞行力学, 2008,26(4):1-7. ZHUANG L,WANG L X. Research on flight control law design of fighter with vectoring thrust and post-stall maneuver simulation[J]. Flight Dynamics,2008,26(4):1-7(in Chinese).
[33] ALCORN C W, CROOM M A, FRANCIS M S, et al. The X-31 aircraft:Advances in aircraft agility and performance[J]. Progress in Aerospace Sciences, 1996, 32(4):377-413.
[34] WANG Q, STENGEL R F. Robust nonlinear flight control of a high-performance aircraft[J]. IEEE Transactions on Control Systems Technology, 2005, 13(1):15-26.
[35] 范子强,方振平.过失速机动飞机的鲁棒非线性控制律设计[J]. 航空学报, 2002,23(3):193-196. FAN Z Q,FANG Z P. Robust,nonlinear control design for a poststall maneuver aircraft[J]. Acta Aeronautica et Astronautica Sinica,2002,23(3):193-196(in Chinese).
[36] REINER J, BALAS G J, GARRARD W L. Flight control design using robust dynamic inversion and time-scale separation[J]. Automatica, 1996, 32(11):1493-1504.
[37] DAVIDSON J B, FOSTER J V. Development of a control law design process utilizing advanced synthesis methods with application to the NASA F-18 HARV[C]//High-Angle-of-Attack Projects and Technology Conference, 1992.
[38] 谢蓉, 王新民, 李俨. 超机动飞机动态逆-PID控制器设计[J].飞行力学, 2009,27(2):67-71. XIE R,WANG X M,LI Y.Dynamic inversion-PID controller of a supermaneuverable aircraft[J].Flight Dynamics, 2009,27(2):67-71(in Chinese).
[39] 胡孟权.超机动飞行非线性动态逆模糊自适应控制[J]. 飞行力学,2001,19(1):22-25. HU M Q. Nonlinear dynamic inversion-fuzzy self-adaptive control for super maneuverable flight[J].Flight Dynamics, 2001,19(1):22-25(in Chinese).
[40] 李艺海, 韩意新, 方自力. 基于扩张状态观测器的动态逆过失速机动飞行控制[J]. 飞行力学, 2017, 35(2):1-5. LI Y H,HAN Y X,FANG Z L.Post-stall maneuver flight control using extended state observer based dynamic inversion[J] Flight Dynamics,2017,35(2):1-5(in Chinese).
[41] 朱荣刚, 姜长生, 邹庆元, 等. 超机动飞行的神经网络动态逆控制[J]. 南京航空航天大学学报, 2003,35(2):62-66. ZHU R G,JIANG C S,ZOU Q Y, et, al. Neural network dynamic inversion control and simulation of supermaneuverable flight[J].Journal of Nanjing University of Aeronautics & Astronautics,2003,35(2):62-66(in Chinese).
[42] WILSON D,CITURS K D.High angle of attack flying qualities criteria for longitudinal rate command systems:N95-14247[R].1994.
[43] 龙晋伟, 潘文俊, 王立新,等.基于任务评定的战斗机大迎角飞行控制律设计方法[J]. 北京航空航天大学学报,2014,40(6):844-848. LONG J W, PAN W J,WANG L X. Design approach of nonlinear flight control law for fighter at high angle-of-attack based on mission-oriented flying qualities method[J]. Journal of Beijing University of Aeronautics and Astronautics,2014,40(6):844-848(in Chinese).
[44] 侯天俊, 郭有光, 王立新.基于任务的飞机大迎角飞行品质评定准则[J]. 北京航空航天大学学报, 2014,41(9):1736-1741. HOU T J,GUO Y G, WANG L X. Mission-oriented flying qualities criteria for high angle of attack aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2014,41(9):1736-1741(in Chinese).
[45] 龚正. 非线性飞行动力学系统分支与控制研究[D].南京:南京航空航天大学,2007. GONG Z. Branch and control of nonlinear flight dynamics systems[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2007(in Chinese).
[46] CRAIG J,FRED C.Application of dynamical systems theory to the high angle of attack dynamics of the F-14[C]//28th Aerospace Sciences Meeting. Reston:AIAA,1990.
[47] BAUMANN D D.F-15B high angle-of-attack phenomena and spin prediction using bifurcation analysis:AD-A217366[R]. 1989.
[48] HAWKINS C A.Application of bifurcation and catastrophe theories to near stall flight mechanics:AD-A167697[R]. 1985.
[49] CHARLES G A, LOWENBERG M H, STOTEN D P, et al. Aircraft flight dynamics analysis and controller design using bifurcation tailoring[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA,2002.
[50] AVANZINI G, MATTEIS D G. Bifurcation analysis of a highly augmented aircraft model[J].Journal of Guidance, Control, and Dynamics,1997, 20(4):754-759.
[51] 陈永亮,沈宏良,刘昶. 基于EBA-FLC的飞机急滚机动分支分析与控制[J]. 航空学报,2006,27(1):5-9. CHEN Y L,SHEN H L,LIU C. Roll manoeuvre bifurcation analysis and contorl of aircraft using EBA-FLC method[J]. Acta Aeronautica et Astronautica Sinica,2006,27(1):5-9(in Chinese).
[52] STILLION J, PERDUE S. Air combat past, present and future[Z]. RAND,Project air force.
[53] LITTLEBOY D M, SMITH P R.Closed loop analysis of a simple aircraft model using bifurcation methods:AIAA-1996-3366[R].Reston:AIAA, 1996.
[54] AVANZINI G, MATTEIS D G. Bifurcation analysis of a highly augmented aircraft model[J].Journal of Guidance, Control, and Dynamics, 1997, 20(4):254-259.
[55] 吉洪湖.飞发一体化设计中的发动机隐身问题[J].航空动力,2018(2):67-71. JI H H. Fundamental issues of aircraft/engine integration for low observability[J]. Aerospace Power,2018(2):67-71(in Chinese).
[56] 斯仁.飞行器红外隐身设计评估软件及二元喷管隐身技术研究[D].南京:南京航空航天大学,2015. SI R. Research on development of aircraft's infrared signature and stealth efficiency software and stealth technology of 2DCD nozzle[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
文章导航

/