固体力学与飞行器总体设计

仿生负泊松比拉胀内凹蜂窝结构耐撞性

  • 任毅如 ,
  • 蒋宏勇 ,
  • 金其多 ,
  • 朱国华
展开
  • 1. 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082;
    2. 湖南大学 机械与运载工程学院, 长沙 410082;
    3. 长安大学 汽车学院, 西安 710064

收稿日期: 2020-03-15

  修回日期: 2020-04-10

  网络出版日期: 2020-05-14

基金资助

国家自然科学基金创新研究群体项目(51621004);国家自然科学基金(11402011);湖南省研究生科研创新项目(CX2018B204)

Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio

  • REN Yiru ,
  • JIANG Hongyong ,
  • JIN Qiduo ,
  • ZHU Guohua
Expand
  • 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
    2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
    3. School of Automobile, Chang'an University, Xi'an 710064, China

Received date: 2020-03-15

  Revised date: 2020-04-10

  Online published: 2020-05-14

Supported by

Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51621004); National Natural Science Foundation of China (11402011); Hunan Provincial Innovation Foundation for Postgraduate (CX2018B204)

摘要

基于自然界微观生物结构的启发,设计了1种新型仿生负泊松比拉胀内凹蜂窝(ARH),并对其耐撞性能进行数值模拟。结合竹子的梯度结构和椰子树的同心胞结构,提出了2种单向梯度和2种双向梯度同心ARH结构。梯度同心结构设计方法不仅可诱导结构渐进的冲击行为,而且因其较低的等效壁厚可改善其比吸能能力。与传统ARH结构相比,对仿生ARH结构的平台应力和吸能特性进行研究,并分析耦合压溃变形模式、收缩变形机理和负泊松比效应等来揭示结构的增强机理。结果表明:预测的耐撞响应和压溃变形模式与参考结果相似;相对传统的ARH,梯度同心ARH有更高的平台应力和比吸能,且平台应力的上升和压溃变形模式均呈梯度变化;梯度方向对压溃变形模式和各层变形顺序影响较大;双向梯度同心ARH比单向梯度同心ARH因耦合变形具有更高的吸能能力;同心胞数对蜂窝各层的收缩变形有较大影响。

本文引用格式

任毅如 , 蒋宏勇 , 金其多 , 朱国华 . 仿生负泊松比拉胀内凹蜂窝结构耐撞性[J]. 航空学报, 2021 , 42(3) : 223978 -223978 . DOI: 10.7527/S1000-6893.2020.23978

Abstract

Based on the inspiration from micro biological structure in nature, a novel bio-inspired negative Poisson’s ratio (NPR) auxetic reentrant honeycomb (ARH) is designed, and the crashworthiness is studied numerically. Combining both graded structure of bamboo and concentric-cell structure of coconut palm, two types of unidirectionally and two types of bidirectionally graded concentric ARH are proposed. The present graded/concentric structure design not only induces the progressive structural crushing behaviors, but improves the specific energy-absorption capacity because of low equivalent wall-thickness. The plateau stress and energy-absorption characteristics of the bio-inspired ARH structure are studied in comparison with traditional ARH structure. Furthermore, the coupled crushing deformation modes, shrinkage deformation mechanism and NPR effect are systematically analyzed to reveal the structural enhancement mechanism. Results show that the predicted stress-strain responses and crushing deformation modes correlate well with the reference results. Relative to conventional ARH, the graded concentric ARH has higher plateau stress and specific energy-absorption. The gradient variations are presented for both plateau stress and crushing deformation modes. The gradient direction has a significant effect on the crushing deformation modes and deformation order of every layer, the bidirectionally graded concentric ARH has higher energy absorption capacity than the unidirectionally graded concentric ARH, and the shrinkage deformation is significantly affected by the number of concentric-cell.

参考文献

[1] 陈尚军, 秦庆华, 张威, 等. 低速冲击下金属蜂窝夹芯板抗侵彻性能的实验研[J]. 航空学报, 2018, 39(2):221483. CHEN S J. QIN Q H, ZHANG W, et al. Experimental investigations on perforations of aluminum honeycomb sandwiches under low-velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):221483(in Chinese).
[2] WU Y, LIU Q, FU J, et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B:Engineering 2017, 121:122-133.
[3] 程文杰, 周丽, 张平, 等. 零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用[J]. 航空学报, 2015, 36(2):680-690. CHENG W J, ZHOU L, ZHANG P, et al. Design and analysis of a zero Poisson's ratio mixed cruciform honeycomb and its application in flexible skin[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):680-690(in Chinese).
[4] 贾光辉, 段枭. 蜂窝夹层板BLE的一种增强型协同优化建模方法[J]. 航空学报, 2015, 36(7):2260-2268. JIA G H, DUAN X. Enhanced collaborative optimization modeling method of BLE about honeycomb sandwich panel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2260-2268(in Chinese).
[5] 石姗姗, 陈秉智, 陈浩然, 等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959. SHI S S, CHEN B Z, CHEN H R, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica 2017, 34(9):1953-1959(in Chinese).
[6] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020,37(6):1352-1363. QI J Q, DUAN Y C, TIE Y, et al. Effect of structural parameters on low-velocity impact properties of CFRP skin-aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica, 2020,37(6):1352-1363.
[7] 龙凯, 谷先广, 韩丹. 考虑泊松效应的材料/结构一体化设计方法[J]. 复合材料学报, 2017, 34(6):1252-1260. LONG K, GU X G, HAN D. A concurrent design method for microstructures of materials and macrostructures by considering the Poisson effect[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1252-1260(in Chinese).
[8] 卢子兴, 王欢, 杨振宇. 星型-箭头蜂窝结构的面内动态压溃行为[J]. 复合材料学报, 2019, 36(8):1893-1900. LU Z X, WANG H, YANG Z Y. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(8):1893-1900(in Chinese).
[9] 周宏元,贾昆程,王小娟. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020,37(8):2005-2014. ZHOU H Y, JIA K C, WANG X J. In-plane compression performance of foam concrete filled with sandwich structure with negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2020,37(8):2005-2014(in Chinese).
[10] 秦浩星,杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023. QIN H X, YANG D Q. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2018, 35(4):1014-1023(in Chinese).
[11] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13):1-14. YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54(13):1-14(in Chinese).
[12] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13):103-109. DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson's ratio[J]. Journal of Vibration and Shock, 2017, 36(13):103-109(in Chinese).
[13] 侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(5):905-910. HOU X H, YIN G S. Dynamic crushing performance analysis for auxetic honeycomb structure[J]. Journal of Mechanical Strength, 2016, 38(5):905-910(in Chinese).
[14] XIAO D, KANG X, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science and Engineering:A, 2019, 763:138151.
[15] HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation:theoretical analysis and numerical simulation[J]. Thin-Walled Structures, 2018, 131:373-384.
[16] HOU X, DENG Z C, ZHANG K. Dynamic crushing strength analysis of auxetic honeycombs[J]. Acta Mechanica Solida Sinica, 2016, 29(5):490-501.
[17] TAN H L, HE Z C, LI K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229:111415.
[18] DONG Z, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb[J]. Materials and Design, 2019, 182:108036.
[19] XIAO D, DONG Z, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb:Experiment and finite element analysis[J]. Materials Science and Engineering:A, 2019, 758:163-171.
[20] LIU Q, MA J, HE Z, et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes[J]. Composites Part B:Engineering, 2017, 121:134-144.
[21] HABIBI M K, SAMAEI A T, GHESHLAGHI B G, et al. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure-Underlying mechanisms[J]. Acta Biomaterialia, 2015, 16:178-186.
文章导航

/