电子电气工程与控制

改进的格网惯导系统无阻尼综合校正方法

  • 黄卫权 ,
  • 方涛 ,
  • 王宗义
展开
  • 哈尔滨工程大学 自动化学院, 哈尔滨 150001

收稿日期: 2020-03-02

  修回日期: 2020-03-25

  网络出版日期: 2020-05-14

基金资助

国家自然科学基金(61633008)

Improved non-damping comprehensive calibration method for grid INS

  • HUANG Weiquan ,
  • FANG Tao ,
  • WANG Zongyi
Expand
  • College of Automation, Harbin Engineering University, Harbin 150001, China

Received date: 2020-03-02

  Revised date: 2020-03-25

  Online published: 2020-05-14

Supported by

National Natural Science Foundation of China (61633008)

摘要

综合校正技术可作为抑制格网惯导系统(INS)导航误差的有效手段。加速度计零偏所造成的水平姿态误差是导致综合校正中陀螺漂移估计精度受限的重要因素。针对这一问题,提出了一种改进的无阻尼综合校正方法。首先,推导了格网坐标系框架下估计加速度计零偏和姿态的目标函数;其次,介绍了无阻尼条件下综合校正的两个核心方程;最后设计了无阻尼两点校策略。综合校正前,在多普勒计程仪(DVL)提供的速度辅助下完成加速度计零偏的估计和补偿,以此消除加速度计零偏所造成的水平姿态误差对综合校正中陀螺漂移估计精度的影响。在两次间断的外部位置和航向辅助下通过所设计的综合校正策略完成对陀螺漂移的估计。校正策略中所涉及的水平姿态误差在DVL辅助下由参数估计方法估计得到。仿真及实验结果表明:与现有的研究相比,所设计的综合校正方案进一步减少了DVL的辅助时间,同时由于准确地估计和补偿了加速度计零偏,陀螺漂移的估计精度显著提高,该方案在抑制导航误差方面具备更明显的优势。

本文引用格式

黄卫权 , 方涛 , 王宗义 . 改进的格网惯导系统无阻尼综合校正方法[J]. 航空学报, 2020 , 41(9) : 323921 -323921 . DOI: 10.7527/S1000-6893.2020.23921

Abstract

The comprehensive calibration technique is an effective method for the suppression of grid Inertial Navigation System (INS) errors. The level attitude errors caused by accelerometer biases are the key factors influencing the estimation accuracy of gyroscope drifts in comprehensive calibration. Aiming at this problem, this paper proposes an improved non-damping comprehensive calibration method. First, the objective function in the grid frame is deduced to estimate the accelerometer biases and level horizontal attitudes. Next, the P equation and ψ equation in a non-damping state are introduced. Finally, a non-damping two-point calibration scheme is designed. Before the calibration, the accelerometer biases are estimated and compensated with the velocity given by the Doppler Velocity Log (DVL). The DVL aims to eliminate the negative effect of the level attitude errors caused by accelerometer biases on the estimation accuracy of the gyroscope drifts. With the assistance of two intermittent external positions and yaw, the gyroscope drifts are estimated by the designed calibration scheme. The involved level attitude errors in the calibration scheme are estimated with the DVL. Simulation results indicate that compared with the existing works, the proposed calibration scheme further reduces the time of DVL dependence. Meanwhile, the satisfying estimation and compensation of accelerometer biases lead to the improvement of the estimation accuracy of the gyroscope drift, exhibiting obvious advantage of this method in suppressing navigation errors.

参考文献

[1] 周琪, 秦永元, 付强文, 等. 极区飞行格网惯性导航算法原理[J]. 西北工业大学学报, 2013, 31(2):210-217. ZHOU Q, QIN Y Y, FU Q W, et al. Grid mechanization in inertial navigation systems for transpolar aircraft[J]. Journal of Northwestern Polytechnical University, 2013, 31(2):210-217(in Chinese).
[2] YAN Z P, WANG L, ZHANG W, et al. Polar grid navigation algorithm for unmanned underwater vehicles[J]. Sensors, 2017, 17(7):1599.
[3] 王纯, 张林让, 罗丰. 基于Kalman滤波的GPS/INS接收机自适应干扰抑制方法[J]. 航空学报, 2013, 34(6):1414-1423. WANG C, ZHANG L R, LUO F. Adaptive interference suppression method based on Kalman filter in GPS/INS receiver[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1414-1423(in Chinese).
[4] ZHANG H L, WU Y X, WU W Q, et al. Improved multi-position calibration for inertial measurement units[J]. Measurement Science and Technology, 2010, 21(1):015107.
[5] AKEILA E, SALCIC Z, SWAIN A. A self-resetting method for reducing error accumulation in INS-based tracking[C]//IEEE/ION Position, Location and Navigation Symposium. Piscataway:IEEE Press, 2010:418-427.
[6] AKEILA E, SALCIC Z, SWAIN A. Reducing low-cost INS error accumulation in distance estimation using self-resetting[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1):177-184.
[7] GREWAL M S, WEILL L R, ANDREWS A P. Global positioning systems, inertial navigation, and integration[M]. New York:John Wiley & Sons, 2007.
[8] LEE J Y, KIM H S, CHOI K H, et al. Adaptive GPS/INS integration for relative navigation[J]. GPS Solutions, 2016, 20(1):63-75.
[9] 丰璐, 邓志红, 王博, 等. 一种长航时捷联惯导系统单点综合校正方法[J]. 兵工学报, 2016, 37(2):265-271. FENG L, DENG Z H, WANG B, et al. A one-position comprehensive calibration method for long-endurance strapdown inertial navigation systems[J]. Acta Armamentarii, 2016, 37(2):265-271(in Chinese).
[10] BONA B E, SMAY R J. Optimum reset of ships inertial navigation system[J]. IEEE Transactions on Aerospace and Electronic Systems, 1966, AES-2(4):409-414.
[11] 杨晓东, 邓太光. 平台式惯导系统两点校的常值误差分析[J]. 交通运输工程学报, 2011, 11(3):100-104. YANG X D, DENG T G. Constant error analysis of two-point comprehensive calibration in gimbaled inertial navigation system[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3):100-104(in Chinese).
[12] 黄德鸣, 程禄. 惯性导航系统[M]. 北京:国防工业出版社, 1986. HUANG D M, CHENG L. Inertial navigation system[M]. Beijing:National Defense Industrial Press, 1986(in Chinese).
[13] 高伟, 史宏洋, 张鑫, 等. 基于位置信息的捷联惯导系统综合校正[J]. 华中科技大学学报(自然科学版), 2014, 42(6):101-106. GAO W, SHI H Y, ZHANG X, et al. Comprehensive correction technology of strapdown inertial navigation system based on position information[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(6):101-106(in Chinese).
[14] 李魁, 王玮, 刘芳, 等. 长航时惯导系统全阻尼综合校正算法[J]. 仪器仪表学报, 2012, 33(3):543-548. LI K, WANG W, LIU F, et al. New comprehensive damping and correction algorithm for long-endurance inertial navigation system[J]. Chinese Journal of Scientific Instrument, 2012, 33(3):543-548(in Chinese).
[15] LI Q, BEN Y Y, YU F, et al. System reset of transversal strapdown INS for ship in polar region[J]. Measurement, 2015, 60:247-257.
[16] HUANG W Q, FANG T, LYNCH A F, et al. Comprehensive calibration algorithm for long-endurance shipborne grid SINS[J]. Measurement Science and Technology, 2019, 30(10):105104.
[17] 罗莉, 张勇刚, 方涛. 横坐标系捷联惯导系统的卡尔曼滤波阻尼设计[J]. 系统工程与电子技术, 2019, 41(6):1336-1341. LUO L, ZHANG Y G, FANG T. Damping algorithm of transverse strap-down inertial navigation system based on Kalman filter[J]. Systems Engineering and Electronics, 2019, 41(6):1336-1341(in Chinese).
[18] 查峰, 覃方君, 李峰, 等. 外速度参考条件下的惯导系统快速外阻尼算法[J]. 武汉大学学报(信息科学版), 2019, 44(3):398-404. ZHA F, TAN F J, LI F, et al. A fast damping algorithm for INS with external velocity reference[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3):398-404(in Chinese).
[19] LIU P J, WANG B, DENG Z H, et al. A correction method for DVL measurement errors by attitude dynamics[J]. IEEE Sensors Journal, 2017, 17(14):4628-4638.
[20] MORGADO M, BATISTA P, OLIVEIRA P, et al. Position USBL/DVL sensor-based navigation filter in the presence of unknown ocean currents[J]. Automatica, 2011, 47(12):2604-2614.
[20] 夏卫星, 杨晓东, 王炜. 惯导系统无阻尼综合校正方法研究[J]. 中国造船, 2012, 53(4):100-108. XIA W X, YANG X D, WANG W. Research on umdamped comprehensive calibration of INS[J]. Shipbuilding of China, 2012, 53(4):100-108(in Chinese).
[21] FANG T, HUANG W Q, LYNCH A F, et al. Non-damping system reset algorithm for shipborne grid strap-down inertial navigation systems[J]. Measurement Science and Technology, 2020, 31(5):055104.
[22] WU Y X, WANG J L, HU D W. A new technique for INS/GNSS attitude and parameter estimation using online optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(10):2642-2655.
[23] CHANG L B, HU B Q. Robust initial attitude alignment for SINS/DVL[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4):2016-2021.
[24] PAN X F, WU Y X. Underwater Doppler navigation with self-calibration[J]. The Journal of Navigation, 2016, 69(2):295-312.
文章导航

/