材料工程与机械制造

铺放参数对复合材料厚度方向力学行为影响

  • 蔡立成 ,
  • 钱诗梦 ,
  • 汪海晋 ,
  • 丁会明 ,
  • 徐强
展开
  • 1. 浙江大学 机械工程学院 流体动力与机电系统国家重点实验室 浙江省先进制造技术重点研究实验室, 杭州 310027;
    2. 杭州艾美依航空制造装备有限公司, 杭州 311200

收稿日期: 2020-01-10

  修回日期: 2020-02-03

  网络出版日期: 2020-05-11

基金资助

国家自然科学基金(51805476)

Effect of laying parameters on mechanical behavior of composite in thickness direction

  • CAI Licheng ,
  • QIAN Shimeng ,
  • WANG Haijin ,
  • DING Huiming ,
  • XU Qiang
Expand
  • 1. The State Key Laboratory of Fluid Power & Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Hangzhou AME Aerospace Manufacturing Equipment Corporation Limited, Hangzhou 311200, China

Received date: 2020-01-10

  Revised date: 2020-02-03

  Online published: 2020-05-11

Supported by

National Natural Science Foundation of China (51805476)

摘要

为了探究铺放工艺参数的变化对复合材料厚度方向力学行为的影响,通过面外拉伸实验分析了铺放压力与铺放温度对复合材料厚度方向面外拉伸强度与拉伸模量的影响,并对不同铺放工艺的试件失效模式进行了分析。试验结果表明,增大铺放压力会减小层间富树脂区厚度,使复合材料面外拉伸强度不断增大,当铺放压力为0.225 MPa时取得实验组最大值,与铺放压力0.075 MPa相较强度提升约13.1%,失效模式由纤维断裂与纤维层剥离的组合转变为纤维断裂;铺放压力的进一步增大会挤压层间树脂,改变树脂富集形态,使面外拉伸强度下降,剥离失效模式再度出现。实验用复合材料的适宜铺放温度为30℃,过高的铺放温度会导致孔隙率的上升,使复合材料的面外拉伸强度严重下降,裂纹扩展失去规律性;与铺放温度25℃相比,铺放温度为45℃时复合材料面外拉伸强度下降达19.2%,失效模式由纤维断裂与纤维层剥离的组合失效转化为单一的纤维层剥离失效。

本文引用格式

蔡立成 , 钱诗梦 , 汪海晋 , 丁会明 , 徐强 . 铺放参数对复合材料厚度方向力学行为影响[J]. 航空学报, 2021 , 42(2) : 423821 -423821 . DOI: 10.7527/S1000-6893.2020.23821

Abstract

To explore the effect of the change in laying process parameters on the mechanical behavior of composite materials in thickness direction, the influence of laying pressure and laying temperature on the tensile strength and modulus was measured through an out-of-plane tensile experiment, and the failure mode of the specimen was analyzed. The test results showed that the increased laying pressure would decrease the thickness of the interlayer resin rich area while increasing the out-of-plane tensile strength of the composite materials. The maximum strength of test groups was obtained at laying pressure of 0.225 MPa, and the strength increased by 13.1% compared with that at 0.075 MPa. The failure mode changed from the combination of fiber fracture and layer peeling to fiber fracture. Further increase of laying pressure would squeeze the interlayer resin, and change the form of the resin rich area, thereby causing the tensile strength decrease and reemergence of peeling failure. The suitable laying temperature of the composite material used in the experiment was 30 ℃. Excessive laying temperature will lead to porosity increase, causing serious decrease in the out-of-plane tensile strength and resulting in irregular crack propagation. Compared with the laying temperature of 25 ℃, when it was 45 ℃, the out-of-plane tensile strength of the composite material decreased by 19.2%, and the failure mode was transformed from the combined failure of fiber fracture and layer peeling to dominant layer peeling.

参考文献

[1] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese).
[2] 肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008(1):50-53. XIAO J, LI Y, LI J L. Automated placement technology application on large airplane composite component manufacture[J]. Aeronautical Manufacturing Technology, 2008(1):50-53(in Chinese).
[3] XIE J, LU Y. Study on airworthiness requirements of composite aircraft structure for transport category aircraft in FAA[J]. Procedia Engineering, 2011, 17:270-278.
[4] CHEN X. Experimental investigation on structural collapse of a large composite wind turbine blade under combined bending and torsion[J]. Composite Structures, 2017, 160:435-445.
[5] CHEN X, ZHAO W, ZHAO X L, et al. Failure test and finite element simulation of a large wind turbine composite blade under static loading[J]. Energies, 2014, 7(4):2274-2297.
[6] Federal Aviation Administration. Advisory circular AC 20-107B:composite aircraft structure[S]. Washington, D.C.:Federal Aviation Administration, 2009.
[7] ASHIZAWA M, TOI Y. Unique features and innovative application of advanced composites to the MD-11:AIAA-1990-3217[R]. Reston:AIAA, 1990.
[8] HARA E, YOKOZEKI T, HATTA H, et al. CFRP laminate out-of-plane tensile modulus determined by direct loading[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(10):1538-1544.
[9] RUBIN A M. Common failure modes for composite aircraft structures due to secondary loads[J]. Composites Engineering, 1992, 2:313-320.
[10] FERGUSON R F, HINTON M J, HILEY M J. Determining the through-thickness properties of FRP materials[J]. Composites Science and Technology, 1998, 58:1411-1420.
[11] HARA E, YOKOZEKI T, HATTA H, et al. Effects of geometry and specimen size on out-of-plane tensile strength of aligned CFRP determined by direct tensile method[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(10):1425-1433.
[12] HARA E, YOKOZEKI T, HATTA H, et al. Comparison of out-of-plane tensile moduli of CFRP laminates obtained by 3-point bending and direct loading tests[J]. Composites Part A:Applied Science and Manufacturing, 2014, 67:77-85.
[13] GÜERDAL Z, TOMASINO A P, BIQQERS S B. Effects of processing induced defects on laminate response:interlaminar tensile strength[J]. SAMPE Journal, 1991, 27(4):39-49.
[14] MARSH G. Automating aerospace composites production with fibre placement[J]. Reinforced Plastics, 2011, 55(3):32-37.
[15] LUKASZEWICZ D H, WARD C, POTTER K. The engineering aspects of automated prepreg layup:History, present and future[J]. Composites Part B:Engineering, 2012, 43(3):997-1009.
[16] LICHTINGER R, HÖRMANN P, HINTERHÖLZL R. The effects of heat input on adjacent paths during automated fibre placement[J]. Composites Part A:Applied Science and Manufacturing, 2015, 68:387-397.
[17] JOHN J, GANGLOFF J, SIMACEK P, et al. A process model for the compaction and saturation of partially impregnated thermoset prepreg tapes[J]. Composites Part A:Applied Science and Manufacturing, 2014, 64:234-244.
[18] BUDELMANN D, DETAMPEL H, SCHMIDT C, et al. Interaction of process parameters and material properties with regard to prepreg tack in automated lay-up and draping processes[J]. Composites Part A:Applied Science and Manufacturing, 2019, 117:308-316.
[19] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(3):423-434.
[20] 陆楠楠, 肖军, 齐俊伟, 等. 面向自动铺放的预浸料动态黏性实验[J]. 航空学报, 2014, 35(1):279-286. LU N N, XIAO J, QI J W, et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):279-286(in Chinese).
[21] STOKES-GRIFFIN C M, COMPSTON P. The effect of processing temperature and placement rate on the short beam strength of carbon fibre-PEEK manufactured using a laser tape placement process[J]. Composites Part A:Applied Science and Manufacturing, 2015, 78:274-283.
[22] STOKES-GRIFFIN C M, COMPSTON P. Investigation of sub-melt temperature bonding of carbon-fibre/PEEK in an automated laser tape placement process[J]. Composites Part A:Applied Science and Manufacturing, 2016, 84:17-25.
[23] QURESHI Z, SWAIT T, SCAIFE R, et al. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology:Potential and possibilities[J]. Composites Part B:Engineering, 2014, 66:225-267.
[24] CLANCY G, PEETERS D, OLIVERI V, et al. A study of the influence of processing parameters on steering of carbon fibre/PEEK tapes using laser-assisted tape placement[J]. Composites Part B:Engineering, 2019, 163:243-251.
[25] LUKASZEWICZ D H, POTTER K, EALES J. A concept for the in situ consolidation of thermoset matrix prepreg during automated lay-up[J]. Composites Part B:Engineering, 2013, 45(1):538-543.
[26] 段玉岗, 刘芬芬, 陈耀, 等. 纤维铺放压紧力及预浸带加热温度对复合材料力学性能的影响[J]. 复合材料学报, 2012, 29(4):148-156. DUAN Y G, LIU F F, CHEN Y, et al. Effects of compaction force and heating temperature of prepreg on composite mechanical properties during fiber placement process[J]. Acta Materiae Compositae Sinica, 2012, 29(4):148-156(in Chinese).
[27] 张洋, 钟翔屿, 包建文. 先进树脂基复合材料自动丝束铺放技术研究现状及发展方向[J]. 航空制造技术, 2013, 443(23-24):131-140. ZHANG Y, ZHONG X Y, BAO J W. Research status and future trend of automated fiber placement technology for advanced polymer matrix composites[J]. Aeronautical Manufacturing Technology, 2013, 443(23-24):131-140(in Chinese).
[28] American Society for Testing and Materials. Standard test method for through-thickness "flatwise" tensile strength and elastic modulus of a fiber-reinforced polymer matrix composite materials:ASTM D7291/D7291M-15[S]. West Conshohocken:ASTM International, 2015.
[29] GHAYOOR H, MARSDEN C C, HOA S V, et al. Numerical analysis of resin-rich areas and their effects on failure initiation of composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 117:125-133
[30] 黄新杰, 肖军, 赵聪, 等. 自动铺丝成型工艺参数优化[J]. 玻璃纤维, 2015(6):20-26. HUANG X J, XIAO J, ZHAO C, et al. Process parameter optimization for automatic fiber placement[J]. Fiber Glass, 2015(6):20-26(in Chinese).
[31] 盛磊. 纤维复合材料中孔隙的起因评述[J]. 航天返回与遥感, 1996, 17(2):42-53. SHENG L. An overview of causes on porosity in fiber composites[J]. Spacecraft Recovery & Remote Sensing, 1996, 17(2):42-53(in Chinese).
[32] 薛斌, 关志东, 韩庚. 固化工艺参数对准各向同性层合板压缩性能影响试验研究[C]//第十五届中国科协年会第17分会场:复合材料与节能减排研讨会论文集, 2013:59-63. XUE B, GUAN Z D, HAN G. Influence of process parameters on compression strength of quasi-isotropic composite laminates-experimental[C]//Proceedings of the 17th Session of the 15th Annual Conference of China Association for Science and Technology:The Symposium on Composite Materials and Energy Conservation and Emission Reduction, 2013:59-63(in Chinese).
[33] CHANG T F, ZHAN L H, TAN W, et al. Void content and interfacial properties of composite laminates under different autoclave cure pressure[J]. Composite Interfaces, 2016, 24(5):529-540.
[34] ARATAMA S, HASHIZUME R, TAKENAKA K, et al. Microscopic observation of voids and transverse crack initiation in CFRP laminates[J]. Advanced Composite Materials, 2016, 25(S1):115-130.
[35] LIEBIG W V, VIETS C, SCHULTE K, et al. Influence of voids on the compressive failure behaviour of fibre-reinforced composites[J]. Composites Science and Technology, 2015, 117:225-233.
文章导航

/