电动飞机专栏

分布式电推进飞机设计技术综述

  • 黄俊
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 辽宁通用航空研究院, 沈阳 110136

收稿日期: 2020-03-30

  修回日期: 2020-04-10

  网络出版日期: 2020-04-30

Survey on design technology of distributed electric propulsion aircraft

  • HUANG Jun
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Liaoning General Aviation Academy, Shenyang 110136, China

Received date: 2020-03-30

  Revised date: 2020-04-10

  Online published: 2020-04-30

摘要

分布式电推进系统利用电力驱动多个推进器作为飞机的动力装置,在提升飞机气动效率、载运能力、环保性和鲁棒性等方面蕴藏着可供人们挖掘和利用的巨大潜能,被广泛认为是一种航空领域的颠覆性技术。本文在对电动飞机的优势和不足,电推进系统的尺度独立性以及分布式电推进飞机分类进行初步研究之后,重点从飞机工程设计的专业划分角度出发,分别从飞机总体设计、气动设计、结构设计、系统及支持设施设计等学科对分布式电推进飞机设计技术的研究情况和学术进展进行综述。随着电池能量密度、电机及控制器功率密度的不断提升以及相关机载电气设备的小型化和轻量化,分布式电推进通用飞机基本具备按需航空市场化能力,尽管仍存在一些挑战,但该技术为未来飞机设计提供了更多的权衡空间与可能性。

本文引用格式

黄俊 . 分布式电推进飞机设计技术综述[J]. 航空学报, 2021 , 42(3) : 624037 -624037 . DOI: 10.7527/S1000-6893.2020.24037

Abstract

The distributed electric propulsion system, which uses electric power to drive multiple propulsors as the aircraft power device, is widely considered a disruptive technology in the aviation field because of its great potential in improving aerodynamic efficiency, carrying capacity, environmental protection, and robustness of aircraft. This paper presents a survey on the research and academic progress of distributed electric propulsion aircraft design technology from the perspective of professional division for aircraft engineering design, based on a preliminary study of the advantages and disadvantages of electric aircraft, the scale independence of electric propulsion system, as well as the classification of distributed electric propulsion aircraft. This design technology involves aircraft conceptual/preliminary design, aerodynamic design, structural design, system and support facility design. With continuous improvements in battery energy density, motor and controller power density, and the miniaturization and lightweight of related airborne electrical equipment, the distributed electric propulsion general aircraft basically owns the market-oriented ability in on-demand aviation. Despite certain challenges, this technology provides more trade-off space and possibility for future aircraft design.

参考文献

[1] KUMAR T, MOHSIN R, GHAFIR M F A, et al. Concerns over Use of Leaded Aviation Gasoline (AVGAS) Fuel[J]. Chemical Engineering Transactions, 2018, 63:181-186.
[2] WOLFE P J, GIANG A, ASHOK A, et al. Costs of IQ loss from leaded aviation gasoline emissions[J]. Environmental Science & Technology, 2016, 50(17):9026-9033.
[3] FAROKHI S. Future propulsion systems and energy sources in sustainable aviation[M]. New Jersey:John Wiley & Son, Inc., 2020:384-385.
[4] MOORE M D. The third wave of aeronautics:On-demand mobility[J]. Journal of Aerospace, 2006, 115(1):713-722.
[5] MOORE M D, GOODRICH K, VIKEN J, et al. High-speed mobility through on-demand aviation:AIAA-2013-4373[R]. Reston:AIAA, 2013.
[6] BORER N K, MOORE M D, TURNBULL A R. Trade-space exploration of distributed propulsors for advanced on-demand mobility concepts:AIAA-2014-2850[R]. Reston:AIAA, 2014.
[7] PATTERSON M D, GERMAN B J, MOORE M D. Performance analysis and design of on-demand electric aircraft concepts:AIAA-2012-5474[R]. Reston:AIAA, 2012.
[8] MOORE M D, FREDERICKS B. Misconceptions of electric propulsion aircraft and their emergent aviation markets:AIAA-2014-0535[R]. Reston:AIAA, 2014.
[9] 黄俊,杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).
[10] KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology:AIAA-2018-4998[R]. Reston:AIAA, 2018.
[11] KIM H D, BERTON J J, JONES S M. Low noise cruise efficient short take-off and landing transport vehicle study:AIAA-2006-7738[R]. Reston:AIAA, 2006.
[12] BYRON R, WINBORN J. ADAM Ⅲ V/STOL concept[J]. Journal of Aircraft, 1970, 7(2):175-181.
[13] GOHARDANI A S. Distributed propulsion technology[M]. New York:Nova Science Publishers, Inc., 2014:173-184.
[14] KRATZ J L, THOMAS G L. Dynamic analysis of the starc-abl propulsion system:AIAA-2019-4182[R]. Reston:AIAA, 2019.
[15] YOON A, SRASTU F, LOHAN F. Direct-drive electric motor for STARC-ABL tail-cone propulsor:AIAA-2019-4516[R]. Reston:AIAA, 2019.
[16] SCHILTGEN B T, FREEMAN J L, HALL D W. Aero-propulsive interaction and thermal system integration within the ECO-150:A turboelectric distributed propulsion airliner with conventional electric machines:AIAA-2016-4064[R]. Reston:AIAA, 2016.
[17] FREEMAN J L, SCHILTGEN B T. ECO-150-300 design and performance:A tube-and-wing distributed electric propulsion airliner:AIAA-2019-1808[R]. Reston:AIAA, 2019.
[18] FELDER J L, TONG M T, CHU J. Sensitivity of mission energy consumption to turboelectric distributed propulsion design assumptions on the N3-X hybrid wing body aircraft:AIAA-2012-3701[R]. Reston:AIAA, 2012.
[19] ARMSTROMG M J, ROSS C A H, BLACKWELDER M J, et al. Trade studies for NASA N3-X turboelectric distributed propulsion system electrical power system architecture[J]. SAE International Journal of Aerospace, 2012, 5(2):325-336.
[20] GOHARDANI A S, DOULGERI S. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all-electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391.
[21] GOHARDANI A S. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation[J]. Progress in Aerospace Sciences, 2013, 57(1):25-70.
[22] RODAS E A E, LEWE J H, MAVRIS D. Feasibility focused design of electric on-demand aircraft concepts:AIAA-2014-2856[R]. Reston:AIAA, 2014.
[23] BARIS E, LANDMAN D. An investigation into the potential benefits of distributed electric propulsion on small uavs at low reynolds numbers:AIAA-2017-3924[R]. Reston:AIAA, 2017.
[24] FLYNN M C, JONES C E, RAKHRA P, et al. Impact of key design constraints on fault management strategies for distributed electrical propulsion aircraft:AIAA-2017-5034[R]. Reston:AIAA, 2017.
[25] HERMETZ J, RIDEL M, DOLL C. Distributed electric propulsion for small business aircraft a concept-plane for key-technologies investigations[EB/OL]. (2019-03-26)[2020-03-28]. https://hal.archives-ouvertes.fr/hal-01408988
[26] LASKARIDIS P, VAL E, KIRNER R, et al. Assessment of distributed propulsion systems used with different aircraft configurations:AIAA-2015-4029[R]. Reston:AIAA, 2015.
[27] HOELZEN J, LIU Y L, BENSMANN B, et al. Conceptual design of operation strategies for hybrid electric aircraft[J]. Energies, 2018, 217(11):1-26.
[28] ORDAS I, NIELSEN E J, RALLABHANDI S K, et al. Adjoint-based design of a distributed propulsion concept with a power objective:AIAA-2019-3681[R]. Reston:AIAA, 2019.
[29] OREFICEL F, VECCHIA P D, CILLIBERTI D, et al. Aircraft conceptual design including powertrain system architecture and distributed propulsion:AIAA-2019-4465[R]. Reston:AIAA, 2019.
[30] HOOGREEF M F M, VOS R, VRIES R, et al. Conceptual assessment of hybrid electric aircraft with distributed propulsion and boosted turbofans:AIAA-2019-1807[R]. Reston:AIAA, 2019.
[31] VRIES R, BROWN M, VOS R. Preliminary sizing method for hybrid-electric distributed-propulsion aircraft[J]. Journal of Aircraft, 2019, 56(1):2172-2187.
[32] VRIES R, BROWN M, VOS R. Preliminary sizing of a hybrid-electric passenger aircraft featuring over-the-wing distributed-propulsion:AIAA-2019-1811[R]. Reston:AIAA, 2019.
[33] MA Y Y, ZHANG W, ZHANG Y Z, et al. Sizing method and sensitivity analysis for distributed electric propulsion aircraft[EB/OL]. (2020-03-19)[2020-03-28]. https://doi-org-443.e2.buaa.edu.cn/10.2514/1.C035581.
[34] PATTERSON M D, DASKILEWICZ M J, GERMAN B J. Conceptual design of electric aircraft with distributed propellers:multidisciplinary analysis needs and aerodynamic modeling development:AIAA-2014-0534[R]. Reston:AIAA, 2014.
[35] SCHILTGEN B, GREEN M W, GIBSON A R. Analysis of terminal area operations and short field performance of hybrid electric distributed propulsion:AIAA-2013-4265[R]. Reston:AIAA, 2013.
[36] MOORE K R, NING A. Takeoff and performance trade-offs of retrofit distributed electric propulsion for urban transport[J]. Journal of Aircraft, 2019, 56(5):1880-1891.
[37] PERRY A T, BRETL T, ANSELL P J. System Identification and dynamics modeling of a distributed electric propulsion aircraft:AIAA-2019-3086[R]. Reston:AIAA, 2019.
[38] BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator:AIAA-2016-3920[R]. Reston:AIAA, 2016.
[39] SCHMOLLGRUBER P, DOLL C, HERMETZ J, et al. Multidisciplinary exploration of DRAGON:An ONERA hybrid electric distributed propulsion concept:AIAA 2019-1585[R]. Reston:AIAA, 2019.
[40] SCHMOLLGRUBER P, DONJAT D, RIDEL M, et al. Multidisciplinary design and performance of the ONERA hybrid electric distributed propulsion concept (DRAGON):AIAA-2020-0501[R]. Reston:AIAA, 2020.
[41] MOORE K R, NING A. Distributed electric propulsion effects on traditional aircraft through multidisciplinary optimization:AIAA-2018-1652[R]. Reston:AIAA, 2018.
[42] ANIBAL J L, MADER C A, MARTINS C R R A. Aerothermal optimization of X-57 high-lift motor nacelle:AIAA-2020-2115[R]. Reston:AIAA, 2020.
[43] WICK A T, HOOKER J R, HARDIN C J. Integrated aerodynamic benefits of distributed propulsion:AIAA-2015-1500[R]. Reston:AIAA, 2015.
[44] SCHILTGEN B T, FREEMAN J F, HALL D W. Aero-propulsive interaction and thermal system integration within the ECO-150:A turboelectric distributed propulsion airliner with conventional electric machines:AIAA-2016-4064[R]. Reston:AIAA, 2016.
[45] NGUYEN N T, REYNOLDS K, TING E, et al. Wing shaping distributed propulsion aircraft concept for improved aerodynamic efficiency:AIAA-2016-3413[R]. Reston:AIAA, 2016.
[46] PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6):2414-2426.
[47] PATTERSON M D, GERMAN B. Wing aerodynamic analysis incorporating one-way interaction with distributed propellers:AIAA-2014-2852[R]. Reston:AIAA, 2014.
[48] STOLL A M, BEVIRT J, MOORE M D, et al. Drag reduction through distributed electric propulsion:AIAA-2014-2851[R]. Reston:AIAA, 2014.
[49] STOLL A M. Comparison of CFD and experimental results of the LEAPTech distributed electric propulsion blown wing:AIAA-2015-3188[R]. Reston:AIAA, 2015.
[50] DEERE K A, VIKEN J K, VIKEN S A, et al. Computational analysis of a wing designed for the X-57 distributed electric propulsion aircraft:AIAA-2017-3923[R]. Reston:AIAA, 2017.
[51] DEERE K A, VIKEN S A, CARTER M B, et al. Computational analysis of powered lift augmentation for the LEAPTech distributed electric propulsion wing:AIAA-2017-3921[R]. Reston:AIAA, 2017.
[52] VIKEN J K, VIKEN S A, DEERE K A, et al. Design of the cruise and flap airfoil for the X-57 Maxwell distributed electric propulsion aircraft:AIAA-2017-3922[R]. Reston:AIAA, 2017.
[53] DEERE K A, VIKEN J K, VIKEN S A, et al. Computational component build-up for the X-57 distributed electric propulsion aircraft:AIAA-2018-1275[R]. Reston:AIAA, 2018.
[54] MURPHY P C, LANDMAN D. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing:AIAA-2015-0017[R]. Reston:AIAA, 2015.
[55] VECCHIA P D, MALGIERI D, NICOLOSI F, et al. Numerical analysis of propeller effects on wing aerodynamic:tip mounted and distributed propulsion[J]. Transportation Research Procedia, 2018, 29:106-115.
[56] HUFF D L, HENDERSON B S, ENVIA E. Motor noise for electric powered aircraft:AIAA-2016-2882[R]. Reston:AIAA, 2016.
[57] SYNODINOS A P, SELF R H,TORIJA A J. Preliminary noise assessment of aircraft with distributed electric propulsion:AIAA-2018-2817[R]. Reston:AIAA, 2018.
[58] RIZZI S A, PALUMBO D L, RATHSAM J, et al. Annoyance to noise produced by a distributed electric propulsion high-lift system:AIAA-2017-4050[R]. Reston:AIAA, 2017.
[59] NARK D M, BUNING P G, JONES A T, et al. High-lift propeller noise prediction for a distributed electric propulsion flight demonstrator:AIAA-2017-3713[R]. Reston:AIAA, 2017.
[60] HALLEZ R, COLANGELI C, CUENCA J, et al. Impact of electric propulsion on aircraft noise-all-electric light aircrafts case study:AIAA-2018-4982[R]. Reston:AIAA, 2018.
[61] DEERE K A, VIKEN S A, CARTER M B, et al. Comparison of high-fidelity computational tools for wing design of a distributed electric propulsion aircraft:AIAA-2017-3925[R]. Reston:AIAA, 2017.
[62] BOHARI B, BORLON Q, SANTOS P B M, et al. Conceptual design of distributed propellers aircraft:non-linear aerodynamic model verification of propeller-wing interaction in high-lift configuration:AIAA-2018-1742[R]. Reston:AIAA, 2018.
[63] SHARPE P, AGARWAL R K. Numerical analysis of propeller-wing interaction in aircraft with distributed electric propulsion:AIAA-2019-3691[R]. Reston:AIAA, 2019.
[64] GIBSON A R, HALL D, WATER M. Superconducting electric distributed propulsion structural integration and design in a split-wing regional airliner:AIAA-2011-0223[R]. Reston:AIAA, 2011.
[65] REYNOLDS K, NGUYEN N, TING E, et al. Wing shaping concepts using distributed propulsion[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):478-482.
[66] MUKHOPADHYAY V, OZOROSKI T A, MCMILLIN M L. Structural configuration analysis of advanced flight vehicle concepts with distributed hybrid-electric propulsion:AIAA-2018-1747[R]. Reston:AIAA, 2018.
[67] NGUYEN E, ALAZZRD D, DOLL C, et al. Co-design of aircraft vertical tail and control laws using distributed electric propulsion[J]. IFAC-PapersOnLine, 2019, 52(12):514-519.
[68] NGUHAN N T, REYNOLDS K, TING E. Distributed propulsion aircraft with aeroelastic wing shaping control for improved aerodynamic efficiency[J]. Journal of Aircraft, 2018, 55(3):1122-1140.
[69] MASSEY S J, STANFORD B K, WIESEMAN C D. Aeroelastic analysis of a distributed electric propulsion wing:AIAA-2017-0413[R]. Reston:AIAA, 2017.
[70] HOOVER C B, SHEN J W, KRESHOCK A R. Whirl flutter stability and its infiuence on the design of the distributed electric propeller aircraft X-57:AIAA-2017-3785[R]. Reston:AIAA, 2017.
[71] CRAVANA A, MANFREDA G, CESTINO E, et al. Aeroelastic behavior of flexible wings carrying distributed electric propulsion systems[EB/OL]. (2017-01-26)[2020-03-28]. https://doi.org/10.4271/2017-01-2061.
[72] LIU C Y, SI X Y, TENG J F, et al. Method to explore the design space of a turbo-electric distributed propulsion system[J]. Journal of Aerospace Engineering, 2016, 29(5):1-9.
[73] GLADIN J, TRAWICK D, PERULLO C, et al. Modeling and design of a partially electric distributed aircraft propulsion system with GT-HEAT:AIAA-2017-1924[R]. Reston:AIAA, 2017.
[74] VELDHUIS L, KHAJEHZADEH A. Analysis and design of a wing trailing edge mounted over-the-wing distributed propeller propulsion system:AIAA-2017-3692[R]. Reston:AIAA, 2017.
[75] KIM J H, KWON K S, ROY S. Megawatt-class turboelectric distributed propulsion, power, and thermal systems for aircraft:AIAA-2018-2024[R]. Reston:AIAA, 2018.
[76] WANG S Q, ECONOMOU J T, TSOURDOS A. Design of a distributed hybrid electric propulsion system for a light aircraft based on genetic algorithm:AIAA-2017-4305[R]. Reston:AIAA, 2017.
[77] LAWHORN D, RALLABANDI V, IONEL D M. Power electronics powertrain architectures for hybrid and solar electric airplanes with distributed propulsion:AIAA-2018-4995[R]. Reston:AIAA, 2018.
[78] STRATHOFF P, STUMPF E, NUNO M, et al. A study on "through-the-road"-parallel hybrid powertrains for small aircraft with distributed electric propulsion:AIAA-2019-3677[R]. Reston:AIAA, 2019.
[79] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese).
[80] SCHILTGEN B, GREEN M, GIBSON A R, et al. Split-wing propulsor design and analysis for electric distributed propulsion:AIAA-2011-0224[R]. Reston:AIAA, 2011.
[81] BORER N K, MOORE M D. Integrated propeller-wing design exploration for distributed propulsion concepts:AIAA-2015-1672[R]. Reston:AIAA, 2015.
[82] STOKKERMANS T C A, ARNHEM N, SINNIGE T, et al. Validation and comparison of RANS propeller modeling methods for tip-mounted applications[J]. AIAA Journal, 2019, 57(2):566-580.
[83] MIKHALYOV S, DUNAEVSKY A, TEPERIN L, et al. Effects of propeller slipstream of distributed electric propulsion on the wing-flap system[EB/OL]. (2019-12-17)[2020-03-28].https://doi.org/10.1051/matecconf/201930402018.
[84] SUZUKI Y, DUNHAM W, KOLMAMOVSKY I, et al. Failure detection and control of distributed electric propulsion aircraft engines:AIAA-2019-0109[R]. Reston:AIAA, 2019.
[85] GARRETT M, AVANESIAN D, GRANGER M, et al. Development of an 11 kW lightweight, high efficiency motor controller for NASA X-57 distributed electric propulsion using SiC MOSFET switches:AIAA-2019-4400[R]. Reston:AIAA, 2019.
[86] VALEMCIA E, HIDALGO V, LASKARIDIS P, et al. Design point analysis of a hybrid fuel cell gas turbine cycle for advanced distributed propulsion systems:AIAA-2015-3802[R]. Reston:AIAA, 2015.
[87] OKAI K, HIMENO T, WATANABE T, et al. Potential of aircraft electric propulsion with SOFC/GT hybrid core:AIAA-2016-4713[R]. Reston:AIAA, 2016.
[88] OKAI K, NOMURA H, TAGASHIR T, et al. Effects of fuel type on aircraft electric propulsion performance with SOFC/GT hybrid core:AIAA-2017-4957[R]. Reston:AIAA, 2017.
[89] CHOI B B, MORRISON C, DEVER T, et al. Propulsion Electric Grid Simulator (PEGS) for future turboelectric distributed propulsion aircraft:AIAA-2014-3644[R]. Reston:AIAA, 2014.
[90] ROTHHAA P M, MURPHY P C, BACON B J, et al. NASA langley distributed propulsion VTOL tilt-wing aircraft testing, modeling, simulation, control, and flight test development:AIAA-2014-2999[R]. Reston:AIAA, 2014.
[91] FREEMAN J L, KLUNK G T. Dynamic flight simulation of spanwise distributed electric propulsion for directional control authority:AIAA-2018-4997[R]. Reston:AIAA, 2018.
[92] PAPATHAKIS K V, KLOESEL K J, LIN Y, et al. Design and development of a 200-kW turbo-electric distributed propulsion testbed:AIAA-2016-4611[R]. Reston:AIAA, 2016.
[93] PAPATHAKIS K V, SESSIONS A M, BURKHARDT P A, et al. A NASA approach to safety considerations for electric propulsion aircraft testbeds:AIAA-2017-5032[R]. Reston:AIAA, 2017.
文章导航

/