先进空间运输系统气动设计专栏

疏导式热防护结构传热极限特性

  • 艾邦成 ,
  • 陈思员 ,
  • 韩海涛 ,
  • 胡龙飞 ,
  • 鲁芹 ,
  • 初敏 ,
  • 邓代英 ,
  • 俞继军
展开
  • 1. 中国航天空气动力技术研究院, 北京 100074;
    2. 中国航天科技集团有限公司 航天飞行器气动热防护实验室, 北京 100048

收稿日期: 2020-03-17

  修回日期: 2020-04-09

  网络出版日期: 2020-04-30

Heat transfer limit characteristics of integrated dredging thermal protection structure

  • AI Bangcheng ,
  • CHEN Siyuan ,
  • HAN Haitao ,
  • HU Longfei ,
  • LU Qin ,
  • CHU Min ,
  • DENG Daiying ,
  • YU Jijun
Expand
  • 1. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
    2. Laboratory of Aero-Thermal Protection Technology for Aerospace Vehicles, China Aerospace Science and Technology Corporation, Beijing 100048, China

Received date: 2020-03-17

  Revised date: 2020-04-09

  Online published: 2020-04-30

摘要

疏导式热防护结构通过高温热管将前缘驻点等高热流部位的热量快速疏导至大面积区域,可有效降低防热压力,实现新型飞行器前缘非烧蚀防热。然而,疏导结构内部液体工质回流受到飞行器加速过载的显著影响。通过理论评估与地面试验获得了典型过载条件下尖前缘热疏导结构的抗过载性能。结果表明,维持加热条件不变,当过载环境大于4g后,热疏导性能受到明显影响,但过载减小后疏导性能得以快速恢复。研究结论对于一体化疏导结构的设计具有重要的指导意义。

本文引用格式

艾邦成 , 陈思员 , 韩海涛 , 胡龙飞 , 鲁芹 , 初敏 , 邓代英 , 俞继军 . 疏导式热防护结构传热极限特性[J]. 航空学报, 2021 , 42(2) : 623989 -623989 . DOI: 10.7527/S1000-6893.2020.23989

Abstract

Through phase change and transportation of internal working medium, the integrated dredging thermal protection structure can efficiently deliver heat from stagnation point to other larger areas, achieving non-ablative heat shielding for sharp leading edges of advanced vehicles. Nevertheless, the back-flow of the liquid medium relies on the capillary force in the capillary structure, which will be affected by overloading during the flight. A ground test was carried out and the overload characteristic of the integrated dredging thermal protection structure was obtained. The isothermal condition was significantly influenced by overload larger than 4g, and the thermal dredging performance recovered immediately after the overload decreased. The study is instructional for the estimation and design of integrated dredging thermal protection structures of leading edges.

参考文献

[1] RIVERS H K, GLASS D E. Advances in hot-structure development:NASA 20060020757[R]. Washington, D.C.:NASA Langley Research Center, 2006.
[2] BOUQUET C, FISCHER R, THEBAULT J, et al. Composite technologies development status for scramjet:AIAA-2005-3431[R]. Reston:AIAA, 2005.
[3] DAVID E G, RAY D, HAROLD C, et al. Materials development for hypersonic flight vehicles:AIAA-2006-8122[R]. Reston:AIAA, 2006.
[4] BOMAN B, ELIAS T. Tests of a sodium/hastelloy x wing leading edge heat pipe for hypersonic vehicles[C]//AIAA/ASME 5th Joint Thermophysics and Heat Transfer Conference. Reston:AIAA, 1990.
[5] SILVERSTEIN C C. A feasibility study of the heat pipe cooled leading edges for hypersonic cruise aircraft:NASA CR-1857[R]. Washington, D.C.:NASA,1971.
[6] FAGHRI A. Heat pipe science and technology[M]. 2nd ed. Connecticut:University of Connecticut, 2016.
[7] 张友华, 陈连忠, 杨汝森, 等. 高超飞行器尖前缘材料发展及相关气动热试验[J]. 宇航材料工艺, 2012(5):1-4 ZHANG Y H, CHEN L Z, YANG R S, et al. Development and aero-heating tests of sharp leading edge in hypersonic vehicles[J]. Aerospace Materials & Technology, 2012(5):1-4(in Chinese).
[8] 孙健, 刘伟强. 尖化前缘高导热材料防热分析[J]. 航空学报, 2011,32(9):1622-1628. SUN J, LIU W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1622-1628(in Chinese).
[9] 孙健,刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析[J]. 物理学报, 2013, 62(7):231-238. SUN J, LIU W Q. Investigation on integral model of heat-pipe-cooled leading edge of hypersonic vehicle[J]. Acta Physica Sinica, 2013,62(7):231-238(in Chinese).
[10] 刘冬欢, 郑小平, 王飞. 内置高温热管C/C复合材料热防护结构热力耦合机制[J]. 复合材料学报, 2010, 27(3):43-49. LIU D H, ZHENG X P, WANG F. Mechanism of thermomechanical coupling of high temperature heat pipe cooled C/C composite material thermal protection structure[J]. Acta Materiae Compositae Sinica, 2010, 27(3):43-49(in Chinese).
[11] 刘冬欢, 郑小平, 黄拳章, 等. C/C复合材料与高温合金GH600之间高温接触热阻的试验研究[J]. 航空学报, 2010, 31(11):2189-2194. LIU D H, ZHENG X P, HUANG Q Z, et al. Experimental Investigation of high-temperature thermal contact resistance between C/C composite material and superalloy GH600[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2189-2194(in Chinese).
[12] 彭稳根. 高超声速飞行器金属结构热管热防护机制理论与模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2011. PENG W G. Analytical and Numerical investigation into thermal protection mechanism of metallic structural heat pipes in hypersonic vehicles[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[13] PENG W G, HE Y R, WANG X Z, et al. Thermal protection mechanism of heat pipe in leading edge under hypersonic conditions[J]. Chinese Journal of Aeronautics, 2015, 28(1):121-132.
[14] 牛涛, 张艳苓, 侯红亮, 等. 高温热管性能分析与试验[J]. 航空学报, 2016, 37(S1):59-65. NIU T, ZHANG Y L, HOU H L, et al. Properties of high-temperature heat pipe and its experimental[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):59-65(in Chinese).
[15] 谢宗蕻, 孙俊峰. 高超声速飞行器翼面前缘半主动金属热防护系统设计与分析[J]. 航天器环境工程, 2013, 30(1):1-7. XIE Z H, SUN J F. Design and analysis of semi-active thermal protection system for the leading edges of hypersonic vehicles[J].Spacecraft Environment Engineering, 2013, 30(1):1-7(in Chinese).
[16] 吴国庭. 统一热管理的疏导式防热系统概念研究[J]. 航天器工程, 2009, 18(4):13-19. WU G T. Conceptual research of leading thermal protection system with unified heat management[J]. Spacecraft Engineering, 2009, 18(4):13-19(in Chinese).
[17] 肖光明,任建勋,桂业伟, 等. 基于热网络分析法的疏导热防护用高温热管启动特性研究[C]//中国工程热物理学会学术会议,2011. XIAO G M, REN J X, GUI Y W, et al. Research on the start-up of high temperature heat pipe with thermal network analysis[C]//Proceeding of Chinese Society of Engineering Thermophysis, 2011(in Chinese).
[18] 李锋. 疏导式热防护[M]. 北京:中国宇航出版社, 2017. LI F. Dredging thermal protection structures[M]. Beijing:China Astonautic Press, 2017(in Chinese).
[19] 姜贵庆. 疏导式热防护若干问题的探讨[C]//飞行器热环境与热防护研讨会, 2006. JIANG G Q. Research on dredging thermal protection structures[C//Symposium on Thermal Environments and Thermal Protection Structures, 2006(in Chinese).
[20] 姜贵庆, 艾邦成, 俞继军. 疏导热防护的固体传导的性能表征与传导特性分析[J]. 空气动力学学报, 2008, 26(1):44-50. JIANG G Q, AI B C, YU J J. Analysis of solid conduction characteristics of leading thermal protecti on[J]. Acta Aerodynamica Sinica, 2008, 26(1):44-50(in Chinese).
[21] AI B C, YU J J, CHEN S Y, et al. Fabrication of lithium/C-103 alloy heat pipe for sharp leading edge cooling[J]. Heat Mass Transfer, 2018, 54:1359-1366.
[22] CHEN S Y, HAN H T, SHI J T, et al. Applications of sodium/GH4099 heat pipes for nose cap cooling[J]. Microgravity Science and Technology, 2019,31:417-424.
[23] 邓代英, 陈思员, 艾邦成, 等. 尖前缘一体化高温热管启动性能计算分析[J]. 空气动力学学报, 2016, 34(5):646-651. DENG D Y, CHEN S Y, AI B C, et al. Calculation investigation of high-temperature heat pipe startup of sharp leading edge[J]. Acta Aerodynamica Sinica, 2016, 34(5):646-651(in Chinese).
[24] 庄骏,张红. 热管技术及其工程应用[M]. 北京:化学工业出版社,2000. ZHUANG J, ZHANG H. Heat pipe technology and engineering application[M]. Beijing:Chemical Industry Press, 2000(in Chinese).
[25] COTTER T P. Theory of heat pipes:La-3246-M8[R]. Los Alamos Scientific Lab, 1965.
文章导航

/