论文

复杂大时延的多主多从共享遥操作方法

  • 李文皓 ,
  • 张珩 ,
  • 冯冠华
展开
  • 1. 中国科学院 力学研究所, 北京 100190;
    2. 中国科学院大学 工程科学学院, 北京 100049

收稿日期: 2020-02-26

  修回日期: 2020-03-09

  网络出版日期: 2020-04-25

基金资助

中国科学院战略性先导科技专项(XDA17030200);国家重点基础研究发展计划(2013CB733000);国家自然科学基金(11002143);载人航天领域预先研究项目(030601,030101)

Cooperative teleoperation for multi-master/multi-slave systems with large time-varying delays

  • LI Wenhao ,
  • ZHANG Heng ,
  • FENG Guanhua
Expand
  • 1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-02-26

  Revised date: 2020-03-09

  Online published: 2020-04-25

Supported by

Strategic Priority Research Program of the Chinese Academy of Sciences (XDA17030200); Key Project of Chinese National Programs for Fundamental Research and Development (2013CB733000); National Natural Science Foundation of China (11002143); Advanced Research Program of China’s Manned Spaceflight (030601, 030101)

摘要

共享遥操作结合了遥操作和多机器人协调技术,是重要的空间机器人复杂任务拓展和遥操作可靠性提升方式。首先,在综述现有共享遥操作技术的基础上,利用遥操作系统的超前预报特性,提出机器人复杂大时延的共享遥操作方法,给出了多操作员多机器人(MM/MS)复杂操作系统描述模型,设计了分时树状分组策略并给出其使用的前提条件。提出了MM/MS组间共享遥操作方法、时延信息维护规则、操作请求判断和状态信息维护方法。然后,给出了相应组内共享遥操作算法。最后,以多操作员单机器人(MM/SS)共享遥操作为例,给出了简化规则,使用以某大型空间机械臂为对象的MM/SS遥操作系统进行了数字仿真实验。实验结果表明:本文方法在20 s级不确定时延、操作端的交互时延与遥操作回路时延比为0~1等复杂条件下,均可实施连续稳定的遥操作。

本文引用格式

李文皓 , 张珩 , 冯冠华 . 复杂大时延的多主多从共享遥操作方法[J]. 航空学报, 2021 , 42(1) : 523896 -523896 . DOI: 10.7527/S1000-6893.2020.23896

Abstract

Combining teleoperation and multi-robot coordination, cooperative teleoperation is an important means to expand complex space robot tasks and improve reliability for space robot teleoperation. Based on a review of cooperative teleoperation technology, this paper first proposes the cooperative teleoperation method for robots with large time-varying delays, drawing on the advanced prediction characteristics of teleoperation systems. A description model of complex Multi-Master/Multi-Slave (MM/MS) teleoperation systems is provided, together with a tree-like timesharing grouping strategy of all operators and objects with its five prerequisites presented. The cooperative teleoperation method among groups for MM/MS systems, the maintenance rules for time delays, the maintenance method for operation request judgment and operation state, and further, the corresponding cooperative teleoperation algorithm within groups for MM/MS systems are proposed respectively. Simplified rules are provided for the representative Multi-Master/Single-Slave (MM/SS) systems, and digital simulation experiments carried out based on the MM/SS teleoperation systems for ground tests of a large space manipulator. Results show that under the 20 s level large time-varying delay, continuous and stable teleoperation can be achieved when the ratio of interaction delay among operators to the teleoperation loop delay is from 0 to 1.

参考文献

[1] LIU G Y, GENG X D, LIU L Z, et al. Haptic based teleoperation with master-slave motion mapping and haptic rendering for space exploration[J]. Chinese Journal of Aeronautics, 2019, 32(3):723-736.
[2] 李文皓, 张珩, 马欢, 等. 大时延环境下空间机器人的可靠遥操作策略[J]. 机械工程学报, 2017, 53(11):90-96. LI W H, ZHANG H, MA H, et al. Space robot reliable teleoperation strategy under large time delay[J]. Journal of Mechanical Engineering, 2017, 53(11):90-96(in Chinese).
[3] 黄攀峰, 鹿振宇, 党小鹏, 等. 一种基于共享控制的双臂协同遥操作控制方法[J]. 宇航学报, 2018, 39(1):104-110. HUANG P F, LU Z Y, DANG X P, et al. A shared control architecture for dual-arm cooperating teleoperation[J]. Journal of Astronautics, 2018, 39(1):104-110(in Chinese).
[4] FENG G H, LI W H, ZHANG H. Evaluation method for multi-operator and multi-robot teleoperation systems[C]//2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway:IEEE Press, 2018:436-441.
[5] 吴广鑫. 空间机器人遥操作系统及局部自主技术研究[D]. 哈尔滨:哈尔滨工业大学, 2019:1-2. WU G X. Research on space robot teleoperation system and local autonomous technology[D]. Harbin:Harbin Institute of Technology, 2019:1-2(in Chinese).
[6] 李琳辉. 大时延主从遥操作系统的双向控制与共享控制策略研究[D]. 长春:吉林大学, 2005:1-12. LI L H. Study on bilateral control and shared control scheme for master-slave teleoperation system with large time delay[D]. Changchun:Jilin University, 2005:1-12(in Chinese).
[7] 鹿振宇, 黄攀峰, 戴沛. 面向空间遥操作的非对称双人共享控制及其性能分析[J]. 航空学报, 2016, 37(2):648-661. LU Z Y, HUANG P F, DAI P. Asymmetric dual-user shared control method and its performance analysis for space teleoperation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):648-661(in Chinese).
[8] 李滋堤, 孙富春, 刘华平, 等. 基于人工势场的空间遥操作共享控制[J]. 清华大学学报(自然科学版), 2010, 50(10):1728-1732, 1737. LI Z D, SUN F C, LIU H P, et al. Shared control for space teleoperation using artificial potential field[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(10):1728-1732, 1737(in Chinese).
[9] GOLDBERG K, GENTNER S, SUTTER C, et al. The mercury project:A feasibility study for Internet robots[J]. IEEE Robotics & Automation Magazine, 2000, 7(1):35-40.
[10] TAYLOR K, DALTON B, TREVELYAN J. Web-based teleroboics[J]. Robotica, 1999,17(1):49-57.
[11] GOLDBERG K, CHEN B, SOLOMON R, et al. Collaborative teleoperation via the internet[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2000:2019-2024.
[12] KHEDDAR A, TZAFESTAS C, COIFFET P, et al. Parallel multi-robots long distance teleoperation[C]//1997 8th International Conference on Advanced Robotics, 1997:1007-1012.
[13] XI N, TARN T J, BEJCZY A K. Intelligent planning and control for multirobot coordination:An event-based approach[J]. IEEE Transactions on Robotics and Automation, 1996, 12(3):439-452.
[14] OHBA K, KAWABATA S I, CHONG N Y, et al. Remote collaboration through time delay in multiple teleoperation[C]//Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 1999:1866-1871.
[15] CHONG N Y, KOTOKU T, OHBA K, et al. Remote coordinated controls in multiple telerobot cooperation[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2000:3138-3143.
[16] CHONG N Y, KOTOKU T, OHBA K, et al. Use of coordinated online graphics simulator in collaborative multi-robot teleoperation with time delay[C]//Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. Piscataway:IEEE Press, 2000:167-172.
[17] LO W T, LIU Y, ELHAJJ I H, et al. Cooperative teleoperation of a multirobot system with force reflection via internet[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4):661-70.
[18] SIROUSPOUR S. Modeling and control of cooperative teleoperation systems[J]. IEEE Transactions on Robotics, 2005, 21(6):1220-1225.
[19] KHADEMIAN B, HASHTRUDI-ZAAD K. A four-channel multilateral shared control architecture for dual-user teleoperation systems[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2007:2660-2666.
[20] KHADEMIAN B, HASHTRUDI-ZAAD K. Dual-user teleoperation systems:New multilateral shared control architecture and kinesthetic performance measures[J]. IEEE/ASME Transactions on Mechatronics, 2011, 17(5):895-906.
[21] KHADEMIAN B, HASHTRUDI-ZAAD K. A framework for unconditional stability analysis of multimaster/multislave teleoperation systems[J]. IEEE Transactions on Robotics, 2013, 29(3):684-694.
[22] PASSENBERG C, PEER A, BUSS M. Model-mediated teleoperation for multi-operator multi-robot systems[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2010:4263-4268.
[23] PANZIRSCH M, BALACHANDRAN R, ARTIGAS J. Cartesian task allocation for cooperative, multilateral teleoperation under time delay[C]//2015 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015:312-317.
[24] PANZIRSCH M, BALACHANDRAN R, ARTIGAS J, et al. Haptic intention augmentation for cooperative teleoperation[C]//2017 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2017:5335-5341.
[25] LU Z Y, HUANG P F, LIU Z X. Predictive approach for sensorless bimanual teleoperation under random time delays with adaptive fuzzy control[J]. IEEE Transactions on Industrial Electronics, 2017, 65(3):2439-2448.
[26] 蒋再男, 刘宏, 谢宗武, 等. 3D图形预测仿真及虚拟夹具的大时延遥操作技术[J]. 西安交通大学学报, 2008, 42(1):78-81. JIANG Z N, LIU H, XIE Z W, et al. Teleoperation with large time delay based on 3D graphic predictive simulation and virtual fixture[J]. Journal of Xi'an Jiaotong University, 2008, 42(1):78-81(in Chinese).
[27] 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12):1313-1320. LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. Scientia Sinica Technologica, 2018, 48(12):1313-1320(in Chinese).
[28] 李志奇, 刘伊威, 于程隆, 等. 机器人航天员精细操作方法及在轨验证[J]. 载人航天, 2019, 25(5):606-612. LI Z Q, LIU Y W, YU C L, et al. Elaborate operation method for robot astronaut and its on-orbit verification[J]. Manned Spaceflight, 2019, 25(5):606-612(in Chinese).
[29] 赵杰, 高胜, 闫继宏, 等. 基于虚拟向导的多操作者多机器人遥操作系统[J]. 哈尔滨工业大学学报, 2005, 37(1):5-9. ZHAO J, GAO S, YAN J H, et al. Multi-operator and multi-robot teleoperation system based on virtual guide[J]. Journal of Harbin Institute of Technology, 2005, 37(1):5-9(in Chinese).
[30] 马良, 闫继宏, 赵杰, 等. 基于虚拟环境的多操作者多机器人协作遥操作系统[J]. 机器人, 2011, 33(2):169-173. MA L, YAN J H, ZHAO J, et al. Virtual environment-based multi-operator multi-robot cooperative teleoperation system[J]. Robot, 2011, 33(2):169-173(in Chinese).
[31] CHEN H F, HUANG P F, LIU Z X, et al. Time delay prediction for space telerobot system with a modified sparse multivariate linear regression method[J]. Acta Astronautica, 2020, 166:330-341.
[32] 马欢. 空间机器人在轨状态预报[D]. 北京:中国科学院大学, 2016:143-165. MA H. State predication of on-orbit space robot[D]. Beijing:University of Chinese Academy of Sciences, 2016:143-165(in Chinese).
文章导航

/