材料工程与机械制造

高压压气机出口级叶型加工偏差特征及其影响

  • 刘佳鑫 ,
  • 于贤君 ,
  • 孟德君 ,
  • 史文斌 ,
  • 刘宝杰
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100083;
    2. 北京航空航天大学 航空发动机研究院, 北京 100083;
    3. 中国航发沈阳发动机研究所, 沈阳 110015

收稿日期: 2020-01-04

  修回日期: 2020-02-13

  网络出版日期: 2020-04-20

基金资助

国家自然科学基金(51476004);国家科技重大专项(2017-II-0001-0013)

State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage

  • LIU Jiaxin ,
  • YU Xianjun ,
  • MENG Dejun ,
  • SHI Wenbin ,
  • LIU Baojie
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. Research Institute of Aeroengine, Beihang University, Beijing 100083, China;
    3. AVIC Shenyang Engine Design Institute, Shenyang 110015, China

Received date: 2020-01-04

  Revised date: 2020-02-13

  Online published: 2020-04-20

Supported by

National Natural Science Foundation of China (51476004); National Science and Technology Major Project (2017-II-0001-0013)

摘要

以高压压气机出口级叶片叶中截面作为研究对象,获得了实际压气机叶片加工偏差的分布特征,并分析了实际加工偏差对叶型气动性能的影响。以此为基础,研究了加工偏差对叶型性能的影响机理。研究结果表明,实际叶型加工偏差存在一定的系统性偏差,从而导致实际叶型气动性能的平均值偏离设计值。叶型偏差对叶型气动性能的影响存在一定的非线性效应,这在前缘区域更为明显,从而导致了平均叶型的气动性能与实际叶型平均性能出现了明显偏差。前缘附近的几何偏差对吸力面和压力面的速度峰值有较大的影响,因此前缘附近的偏差是使叶型的气动性能产生系统性偏差和增大不确定度的主要因素。根据对流动机理的分析,进口几何角偏差是导致叶型性能出现系统性偏差的主要原因;可以近似用均匀偏差来估计叶身加工偏差对正负攻角范围和损失的影响。

本文引用格式

刘佳鑫 , 于贤君 , 孟德君 , 史文斌 , 刘宝杰 . 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021 , 42(2) : 423796 -423796 . DOI: 10.7527/S1000-6893.2020.23796

Abstract

A mid-section blade of the high-pressure compressor outlet stage is studied to obtain the distribution characteristics of actual manufacture deviations and to analyze the effect of manufacture deviations on the aerodynamic performance of blades. The fluid mechanism of manufacture deviations on blade performance is also examined. Results show that the actual manufacture deviations have certain systematic deviations, leading to the variations of the average aerodynamic performance of the actual blades from the design value. Blade manufacture deviations have certain nonlinear effects on the blade performance, which is more noticeable on the blade leading edge. This results in a distinct disparity between the aerodynamic performance of the mean airfoil of the manufactured blades and the mean performance of all the manufactured blades. The geometric deviations near the leading edge has a considerable effect on the velocity spike of the suction and the pressure surface; therefore, these deviations have been the main factor causing systematic variations and increasing the uncertainty of the blade aerodynamic performance. According to the fluid mechanism, the inlet geometric angle deviations are the main cause of the systematic variations of the blade aerodynamic performance, and the effect of the body deviations on the positive/negative incidence range and losses can be estimated by uniform deviations.

参考文献

[1] 刘维伟, 李杰光, 赵明, 等. 航空发动机薄壁叶片加工变形误差补偿技术研究[J]. 机械设计与制造, 2009(10):175-177. LIU W W, LI J G, ZHAO M, et al. Research on the compensation of deformation error in NC machining of thin-walled blades[J]. Machinery Design & Manufacture, 2009(10):175-177(in Chinese).
[2] 蔡景, 李鑫, 肖罗椿, 等. 竞争风险模型下变环境的发动机叶片可靠性分析[J]. 航空动力学报, 2017, 32(2):398-404. CAI J, LI X, XIAO L C, et al. Reliability analysis of engine blade under varied environment with competing model[J]. Journal of Aerospace Power, 2017, 32(2):398-404(in Chinese).
[3] BALAN C, TABAKOFF W. Axial flow compressor performance deterioration[C]//20th Joint Propulsion Conference. 1984:1208.
[4] ROBERTS W B. Axial compressor performance restoration by blade profile control[C]//ASME 1984 International Gas Turbine Conference and Exhibit. New York:ASME, 1984:V001T01A063.
[5] SUDER K L, CHIMA R V, STRAZISAR A J. The effect of adding roughness and thickness to a transonic axial compressor rotor[J]. Journal of Turbomachinery, 1995, 117(4):491-505.
[6] ELMSTROM M E, MILLSAPS K T, HOBSON G V, et al. Impact of nonuniform leading edge coatings on the aerodynamic performance of compressor airfoils[J]. Journal of Turbomachinery, 2011, 133(4):041004.
[7] GARZON V, DARMOFAL D. Using computational fluid dynamics in probabilistic engineering design[C]//15th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2001:2526.
[8] GARZON V E. Probabilistic aerothermal design of compressor airfoils[D]. Massachusetts:Massachusetts Institute of Technology, 2003:27-44.
[9] GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[C]//ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York:ASME, 2003:1199-1213.
[10] SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9):091005.
[11] LANGE A, VOIGT M, VOGELER K, et al. Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials Conference. Reston:AIAA, 2012:1762.
[12] LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology, 2018, 77:471-484.
[13] WUNSCH D, HIRSCH C, NIGRO R, et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:ASME, 2015:V02CT45A018.
[14] DOW E A, WANG Q. Simultaneous robust design and tolerancing of compressor blades[C]//ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. New York:ASME, 2014:V02BT45A007.
[15] GOODHAND M N, MILLER R J, LUNG H W. The sensitivity of 2D compressor incidence range to in-service geometric variation[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. New York:ASME, 2012:159-170.
[16] GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery, 2015, 137(2):021007.
[17] 张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报, 2010, 31(11):2130-2138. ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2130-2138(in Chinese).
[18] 张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报, 2010, 31(11):1830-1834. ZHANG W H, ZOU Z P, LIU H X, et al, Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics, 2010, 31(11):1830-1834(in Chinese).
[19] 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3):525-531. GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3):525-531(in Chinese).
[20] 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报,2017,38(3):490-497. CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017, 38(3):490-497(in Chinese).
[21] 程超, 吴宝海, 郑海, 等. 叶片加工误差对压气机性能的影响[J]. 航空学报, 2020,41(2):623237. CHENG C, WU B H, ZHENG H, et al. Effect of blade machining errors on compressor performance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623237(in Chinese).
[22] GAO L M, MA C, CAI Y T. A robust blade design method based on non-intrusive polynomial chaos considering profile error[J]. Journal of Thermal Science, 2019, 28(5):875-885.
[23] MA C, GAO L, CAI Y, et al. Robust optimization design of compressor blade considering machining error[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. New York:ASME, 2017.
[24] 罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报, 2017, 38(3):498-504. LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(3):498-504(in Chinese).
[25] HE X Q, ZHENG X. Performance improvement of transonic centrifugal compressors by optimization of complex three-dimensional features[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(14):2723-2738.
[26] 中国航空工业总公司六二四所. 叶片叶型的标注、公差与叶身表面粗糙度:HB 5647-98[S]. 北京:中国航空工业总公司, 1999. CGTE. Blade labeling, tolerance and surface roughness:HB 5647-98[S]. Beijing:Aviation Industry Corporation of China, 1999(in Chinese).
[27] 胡春春. 统计学[M]. 北京:北京理工大学出版社,2017:109. HU C C. Statistics[M]. Beijing:Beijing Institute of Technology Press, 2017:109(in Chinese).
[28] LIND D A, MARCHAL W G, WATHEN S A. Basic statistics for business & economics[M]. Boston:McGraw-Hill/Irwin, 2011:82.
[29] GOODHAND M N, MILLER R J. Compressor leading edge spikes:A new performance criterion[J]. Journal of Turbomachinery, 2011, 133(2):021006.
[30] KÜSTERS B, SCHREIBER H A, KÖLLER U D, et al. Development of advanced compressor airfoils for heavy-duty gas turbines:Part Ⅱ-Experimental and theoretical analysis[C]//ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. New York:ASME, 1999:V001T03A022.
[31] TAIN L, CUMPSTY N A. Compressor blade leading edges in subsonic compressible flow[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2000, 214(1):221-242.
[32] 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术,2013,34(7):890-897. LIU B J, YUAN C X, YU X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil[J]. Journal of Propulsion Technology, 2013, 34(7):890-897(in Chinese).
[33] 刘宝杰, 邓倩雯, 于贤君. 叶型任意位置损失提取方法及其应用[J]. 工程热物理学报,2018,39(1):68-75. LIU B J, DENG Q W, YU X J. Method for extracting the boundary layer loss in any position of cascade and its application[J]. Journal of Engineering Thermophysics, 2018, 39(1):68-75(in Chinese).
[34] GIEBMANNS A, SCHNELL R, STEINERT W, et al. Analyzing and optimizing geometrically degraded transonic fan blades by means of 2D and 3D simulations and cascade measurements[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. New York:ASME, 2012:279-288.
[35] 刘宝杰, 徐晓斌, 于贤君, 等. CDA叶型前缘流动的实验和数值研究[J]. 工程热物理学报, 2019, 40(8):1767-1774. LIU B J, XU X B, YU X J, et al. Experimental and numerical investigation on the flow near the leading-edge of controlled diffusion airfoil[J]. Journal of Engineering Thermophysics, 2019, 40(8):1767-1774(in Chinese).
[36] 于贤君, 庞健, 刘宝杰. 低速模拟在叶型加工偏差影响研究的应用[J]. 工程热物理学报,2018,39(7):1436-1446. YU X J, PANG J, LIU B J. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics, 2018, 39(7):1436-1446(in Chinese).
文章导航

/