加筋短板以其高比强度成为飞机结构的基本元素,其设计方法是基于传统的Euler柱屈曲理论和Timoshenko板壳弹性稳定性理论,由于进行了假设和简化,不能很好地预测破坏载荷。采用GMNIA(Geometrically and Material Nonlinear Analysis with Imperfections)分析方法对加筋短板的承载能力进行仿真分析,结果与试验数据吻合良好。基于GMNIA方法开展了不同类型的几何缺陷对加筋短板承载能力敏感度分析,研究了初弯曲、初偏心以及初变形对加筋短板承载能力的影响。给出了表征加筋短板初弯曲和初变形缺陷的计算公式,为有限元模拟加筋短板破坏过程及预测承载能力提供了技术支持。此外,给出了初弯曲下加筋短板承载能力的设计许用值,提出了通过控制加工制造公差量来提高结构极限承载能力的设计建议,具有明确的工程应用意义和实用价值。
Stiffened short plates are the basic components of aircraft structure because of their high specific strength. Their design method is based on the traditional Euler column buckling theory and Timoshenko plate shell elastic stability theory. However, the failure load cannot be well predicated due to the assumption and simplification in the design. The load-carrying capacity of the stiffened short plate is simulated by the method of GMNIA (Geometric and Material Nonlinear Analysis with Imperfections), and the results are in good agreement with the experimental data. Based on GMNIA, the sensitivity analysis of different types of geometric imperfections in the load-carrying capacity of the stiffened short plate is carried out. The influence of initial bending, initial eccentricity and initial deformation on the load-carrying capacity of the stiffened short plate is studied. The calculation formulas of the initial bending and initial deformation imperfections of the stiffened short plate are given, providing technical support for the finite element simulation of the failure process and prediction of the load-carrying capacity of the stiffened short plate. Furthermore, the allowable design values of the bearing capacity of stiffened short plates under initial bending imperfection are presented, and suggestions of improving the ultimate bearing capacity in the design by controlling the manufacturing tolerance are put forward, exhibiting engineering application significance and practical value.
[1] CALLADINE C R. Understanding imperfection-sensitivity in the buckling of thin-walled shells[J].Thin-Walled Structures, 1995, 23(1):215-235.
[2] 郝鹏,王博,李刚,等. 基于缺陷敏感性分析的加筋圆柱壳结构设计[J].应用力学学报, 2013, 30(3):344-349. HAO P, WANG B, LI G, et al. Structural design of stiffened shells based on imperfection sensitivity analysis[J].Chinese Journal of Applied Mechanics, 2013, 30(3):344-349(in Chinese).
[3] CAMPBELL J,HETEY L,VIGNJEVIC R. Nonlinear idealization error analysis of a metallic stiffened panel loaded in compression[J].Thin-Walled Structures, 2012, 54:44-53.
[4] BERNARD E S,COLEMAN R,BRIDGE R Q. Measurement and assessment of geometrical imperfections in thin-walled panels[J].Thin-Walled Structures, 1999, 33:103-126.
[5] LANZI L A. A numerical and experimental investigation on composite stiffened panels into post-buckling[J].Thin-Walled Structures, 2004, 42(12):1645-1664.
[6] HOUSTON G, QUINN D, MYRPHY A, et al. Impact of geometric imperfections on metallic stiffened panels with skin bay buckling containment features[C]//53th AIAA/ASME/ASCE/AHS/ASC Structure, Structure Dynamics, and Materials Conference. Reston:AIAA, 2012.
[7] PAULO R M F, TEIXEIRA-DIAS F, VALENTE R A F. Numerical simulation of aluminum stiffened panels subjected axial compression:Sensitivity analyses to initial geometrical imperfections and material properties[J].Thin-Walled Structures, 2013, 62(1):65-74.
[8] XU M C, SOARES C G. Assessment of the ultimate strength of narrow stiffened panel tests specimens[J].Thin-Walled Structures, 2012, 55:11-21.
[9] 刘存,张磊,杨卫平. 舰载机壁板剪切后屈曲承载能力预测与试验验证[J].航空学报, 2019, 40(4):622300. LIU C, ZAHNG L, YANG W P. Post-buckling study and test verification of carrier-based aircraft wing stiffened panels under shear load[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622300(in Chinese).
[10] HILBURGER M W, NEMETH M P, STARNES J H. Shell buckling design criteria based on manufacturing imperfection signatures[J].AIAA Journal, 2006, 44(3):654-663.
[11] HILBURGER M W, STARNES J H J. Effects of imperfections on the buckling response of compression-loaded composite shells[C]//41 st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2000.
[12] RIGO P, SARGHIUTA R, ESTEFEN S, et al. Sensitivity analysis on ultimate strength of aluminum stiffened panels[J].Marine Structures, 2003,16:437-468.
[13] COUTO C, VILA R P. Numerical investigation on the influence of imperfections in the local buckling of thin-walled I-shaped sections[J].Thin-Walled Structures, 2019, 135:89-108.
[14] SALTELLI A, RATTO M, TARANTOLA S, et al. Sensitivity analysis practices:Strategies for model-based inference[J].Reliability Engineering and System Safety, 2006, 91(10-11):1109-1125.
[15] 罗鹏程,傅攀峰. 武器装备敏感性分析方法综述[J].计算机工程与设计, 2008, 29(21):5546-5549. LUO P C, FU P F. Review on weapons and equipment sensitivity analysis methods[J].Computer Engineering and Design, 2008, 29(21):5546-5549(in Chinese).
[16] SALTELLI A, MARIVOET J. Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J].Reliability Engineering System Safety, 1990, 28(2):229-253.
[17] HELTON J C, DAVIS F J. Survey of sampling-based methods for uncertainty and sensitivity analysis[J].Reliability Engineering System Safety, 2006, 91(10):1175-1209.
[18] SOBOI I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J].Mathematics and Computers in Simulation, 2001, 55(1-3):271-280.
[19] BORGONOVO E. A new uncertainty importance measure[J].Reliability Engineering System Safety, 2007, 92(6):771-784.
[20] CUI L J, LU Z Z, ZHAO X P. Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China Technological Sciences, 2010, 53(4):1138-1145.
[21] LI L Y, LU Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution[J].Structural Safety, 2012, 38:40-47.
[22] RICE R C, JACKSON J L, BAKUCKAS J, et al. Metallic materials properties development and standardization[M]. Washington,D. C.:Federal Aviation Administration, 2003:3-429.
[23] LANZI L A, GIAVOTTO V O. Post-buckling optimization of composite stiffened panels computations and experiments[J].Composite Structures, 2006,73:208-220.
[24] ABRAMOVICH H, BISAGNI C, CORDISCO P. Post-buckling test simulation of a stiffened composite panel[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2007.
[25] ZHANG S M, KHAN I. Buckling and ultimate capability of plates and stiffened panels in axial compression[J].Marine Structures, 2009, 22(4):791-808.
[26] XU M C, SOARES C G. Assessment of the ultimate strength of narrow stiffened panel tests specimens[J].Thin-Walled Structures, 2012, 55:11-21.
[27] LI Y B, PAN Q, HUANG M H, et al. Set-based parametric modeling, buckling and ultimate strength estimation of stiffened ship structures[J].Journal of Central South University, 2019, 26(7):1958-1975.
[28] MAZZOLAN M. Aluminum alloy structures[M]. Boston:Pitman, 1985.