流体力学与飞行力学

跨介质冲压发动机理论性能与工作参数分析

  • 陈文武 ,
  • 黄利亚 ,
  • 夏智勋 ,
  • 李鹏飞
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2019-12-26

  修回日期: 2020-01-30

  网络出版日期: 2020-04-10

Theoretical performance and working parameters analysis of trans-medium ramjet

  • CHEN Wenwu ,
  • HUANG Liya ,
  • XIA Zhixun ,
  • LI Pengfei
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2019-12-26

  Revised date: 2020-01-30

  Online published: 2020-04-10

摘要

针对空水一体跨介质导弹应用需求,提出了一种采用同一金属基固体推进剂,能够实现在空中和水中工作的跨介质冲压发动机方案。分析了空中和水中典型工况下,金属基固体推进剂配方、空/水燃比、金属种类等对跨介质冲压发动机理论性能的影响。针对给定的跨介质导弹飞行弹道和金属基固体推进剂配方,对发动机设计参数进行了选取,并完成了空中和水中工作条件下发动机工作参数计算,从理论上验证了该跨介质冲压发动机方案的可行性。

本文引用格式

陈文武 , 黄利亚 , 夏智勋 , 李鹏飞 . 跨介质冲压发动机理论性能与工作参数分析[J]. 航空学报, 2020 , 41(11) : 123764 -123764 . DOI: 10.7527/S1000-6893.2020.23764

Abstract

A scheme of trans-medium ramjet engine which can work in both air and water with the same metal solid propellant is proposed to satisfy the application requirements of air-water integrated trans-medium missiles. We study the influence of the solid propellant formulation, air/water fuel ratio and metal type on the theoretical performance of trans-medium ramjets, followed by the selection of the design parameters of the engine with a given flight trajectory of the trans-medium missile and the metal based solid propellant. The operating parameters of the engine working in both air and water are obtained, theoretically verifying the feasibility of the scheme of trans-medium ramjets.

参考文献

[1] 黄利亚, 夏智勋, 曹向宇, 等. 一种基于固体推进的跨介质冲压发动机:201811185845.7[P]. 2019-11-01. HUANG L Y, XIA Z X, CAO X Y, et al. A cross-medium ramjet based on solid propulsion:201811185845.7[P]. 2019-11-01(in Chinese).
[2] DARPA. Broad agency announcement:Submersible air-craft[R]. Arlington:DARPA, 2008.
[3] CROUSE G. Conceptual design of a submersible airplane:AIAA-2010-1012[R]. Reston:AIAA, 2010.
[4] PAN C J, GUO Y Q. Design and simulation of ex-range gliding wing of high altitude air-launched autonomous underwater vehicles based on SIMULINK[J]. Chinese Journal of Aeronautics, 2013, 26(2):319-325.
[5] YE J R, MARZOCCA P. Hybrid propulsion strategies for a multi-modal UAV:AIAA-2018-1011[R]. Reston:AIAA, 2018.
[6] 曹小娟,王崇伟. 火箭助飞鱼雷关键技术研究[J]. 鱼雷技术, 2000, 8(1):10-12. CAO X J, WANG C W. Research on the key technology of rocket-assisted torpedo[J]. Chinese Jounal of Torpedo technology, 2000, 8(1):10-12(in Chinese).
[7] 鲍福廷.固体火箭冲压发动机的发展及关键技术[C]//中国宇航学会2005年固体火箭推进第22届年会, 2005:305-309. BAO F T. Research development and technology of solid rocket ramjet[C]//The 22nd Annual Meeting of Chinese Astronautics Society for Solid Rocket Propulsion in 2005, 2005:305-309(in Chinese).
[8] 阎大庆,单建胜. 固体火箭冲压发动机技术进展[C]//中国宇航学会固体火箭推进专业委员会2001年年会论文集,2001:1-10. YAN D Q, SHAN J S. Advances in solid rocket ramjet technology[C]//Processings of the 2001 Annual Meeting of Solid Rocket Propulsion Committee of Chinese Astronautics Society, 2001:1-10(in Chinese).
[9] 王龙. 固体火箭冲压发动机燃气流量调节技术研究[D]. 哈尔滨:哈尔滨工业大学, 2014:2-5. WANG L. Research on gas flow regulation technology of ducted rocket[D]. Harbin:Harbin Institute of Technology, 2014:2-5(in Chinese).
[10] 郑凯斌,李岩芳,曾庆海. 国外固体火箭冲压发动机飞行试验进展[J]. 弹箭与制导学报, 2018, 38(5):85-90. ZHENG K B, LI Y F, ZENG Q H. Progress of solid ducted rocket flight test abroad[J]. Journal of Projectiles, Rockets, Misslies and Guidance, 2018, 38(5):85-90(in Chinese).
[11] 霍东兴,闫大庆,高波. 可变流量固体冲压发动机技术研究进展与展望[J]. 固体火箭技术, 2017, 40(1):7-15,23. HUO D X, YAN D Q, GAO B. Research progresses and prospect of variable flow ducted rocker technologies[J]. Journal of Solid Rocket Technology, 2017, 40(1):7-15,23(in Chinese).
[12] 邹玉博,周淇,成方达.超空泡鱼雷特点及作战使用分析[J].中国科技信息,2010(21):53-54. ZOU Y B, ZHOU Q, CHENG F D. Analysis of the characteristics and operational application of the supercavitation torpedo[J]. China Science and Technology Information, 2010(21):53-54(in Chinese).
[13] HUANG L Y, XIA Z X, ZHANG W H, et al. An experimental study on rocket propulsion by reaction of Mg-based propellant and water[C]//60th International Astronautical Congress, 2009.
[14] HUANG L Y, XIA Z X, HU J X, et al. Performance study of a water ramjet engine[J]. Science China (Technological Sciences), 2011, 54(4):877-882.
[15] MILLER T F. A high-pressure, continuous operation cyclone separator using a water-generated flow restriction[J]. Powder Technology, 2002,122(1):61-68.
[16] 李芳, 张为华, 张炜, 等. 水反应金属燃料能量特性分析[J]. 固体火箭技术, 2005, 28(4):256-259. LI F, ZHANG W H, ZHANG W, et al. Analysis on energy characteristics of hydro-reactive metal fuel[J]. Journal of Solid Rocket Technology, 2005, 28(4):256-259(in Chinese).
[17] 胡凡, 张为华, 夏智勋, 等. 水反应金属燃料发动机的性能调节[J].固体火箭技术, 2007, 30(5):381-383,403. HU F, ZHANG W H, XIA Z X, el al. Performance adjustment of hydro-reactive metal fuel motor[J]. Journal of Solid Rocket Technology, 2007, 30(5):381-383, 403(in Chinese).
[18] 黄利亚, 夏智勋, 张为华, 等. 水冲压发动机试验水燃比选择方法[J]. 航空学报, 2010, 31(9):1740-1745. HUANG L Y, XIA Z X, ZHANG W H, et al. Water/fuel ratio selection method in water ramjet engine test[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1740-1745(in Chinese).
[19] HUANG L Y, XIA Z X, HU J X, et al. Experimental study on ignition process of a magnesium-based water ramjet engine[J]. Journal of Propulsion and Power,2014, 30(3):857-862.
[20] 黄利亚. 镁基水冲压发动机内部燃烧过程与燃烧组织方法研究[D]. 长沙:国防科技大学, 2010:73-87. HUANG L Y. Research on combustion processes and combustion optimization in magnesium-based water ramjet engines[D]. Changsha:National University of Defense Technology, 2010:73-87(in Chinese).
[21] 胡建新,张为华,夏智勋,等. 冲压推进技术[M]. 长沙:国防科技大学出版社, 2013:39-60. HU J X, ZHANG W H, XIA Z X, et al. Technology of ramjet propulsion[M]. Changsha:National University of Defense Technology Press, 2013:39-60(in Chinese).
[22] 罗文明, 陈为雄, 张涵美. 火箭-冲压发动机和火箭发动机的热力计算[J]. 推进技术, 1985(5):26-35. LUO W M, CHEN W X, ZHANG H M. Thermodynamic calculation of rocket-ramjet and rocket engine[J]. Journal of Propulsion Technology, 1985(5):26-35(in Chinese).
[23] 李传泗. 雷达低空探测问题[J]. 火控雷达技术, 1983(3):1-7. LI C S. Research on problem of radar detection at low altitude[J]. Fire Control Rader Technology, 1983(3):1-7(in Chinese).
[24] 钟志通, 徐德民, 周州. 舰载防空导弹发射区解算模型[J]. 火力与指挥控制, 2009, 34(5):160-162. ZHONG Z T, XU D M, ZHOU Z. Research on intercepting possibility's calculating model of ship-to-air missile weapon[J]. Fire Control & Command Control, 2009, 34(5):160-162(in Chinese).
[25] 喻银飞. 整体式固体火箭冲压发动机内外弹道一体化计算[D]. 南京:南京理工大学, 2014:20-21. YU Y F. Research on integral solid rocket ramjet internal and external ballistic integration calculation[D]. Nanjing:Nanjing University of Science and Technology, 2014:20-21(in Chinese).
[26] 阮建则. 固体火箭冲压发动机设计与性能分析的工程方法[D]. 西安:西北工业大学, 2007:18-30. RUAN J Z. Engineering methods for design and performance analysis of solid rocket ramjet engines[D]. Xi'an:Northwestern Polytechnical University, 2007:18-30(in Chinese).
[27] 陈春玉. 反鱼雷技术[M]. 北京:国防工业出版社, 2006:194. CHEN C Y. Anti-torpedo technology[M]:Beijing:National Defense Industry Press, 2006:194(in Chinese).
文章导航

/