为了找到一种改善低平尾涡桨飞机中小迎角下纵向静稳定度的方法,采用数值模拟手段研究了螺旋桨旋转方向对飞机俯仰力矩特性的影响。基于动态面搭接网格技术和非定常雷诺平均Navier-Stokes (URANS)方程,首先对某T尾双发涡桨飞机进行了计算,验证了方法的精度和可靠性,然后对同向旋转(CO)、对转-内侧上洗(CNIU)和对转-外侧上洗(CNOU)3种低平尾涡桨飞机构型开展了数值模拟,分析了各构型的俯仰力矩变化特点及流场细节。研究结果表明:对于常见的CO构型,在小迎角下由于平尾整体效率降低,飞机的俯仰力矩曲线斜率较无动力构型大幅度下降;在小迎角下,CO构型左侧平尾的效率几乎丧失,但右侧平尾却具有良好的效率;CO构型左右两侧平尾的效率呈现巨大差异的主要原因在于两侧平尾当地的下洗梯度不同;3个构型中,CNOU构型的俯仰力矩特性最差,CNIU构型在整个中小迎角范围内都能保持良好的俯仰力矩特性。
The effects of propeller rotation direction on pitching moment characteristics of aircraft are investigated through numerical simulations, aiming to discover a way to improve the longitudinal static stability of low Horizontal Tail Plane (HTP) turboprop aircraft. Based on the dynamic patched grid technique and unsteady Reynolds-averaged Navier-Stokes (URANS) equations, a T-tai twin-engine turboprop aircraft is computed first to validate the accuracy and reliability of the numerical method. Simulations are then conducted on three different low-HTP turboprop aircraft configurations respectively named co-rotating (CO), counter-rotating inboard-up (CNIU) and counter-rotating outboard-up (CNOU). The pitching moment characteristics and the flowfield details of each configuration are analyzed. Results indicate that the pitching moment curve slope of the conventional CO configuration is significantly lower than that of the unpowered configuration at low angles of attack due to the overall efficiency reduction of the HTP; The port HTP of the CO configuration almost loses its functionality at low angles of attack while the starboard HTP still maintains good efficiency; The large discrepancy in the efficiency between the port and starboard HTP of the CO configuration is mainly due to the difference in their local downwash gradients; Among the three configurations mentioned above, the CNOU configuration appears the worst in terms of pitching moment characteristics, while the CNIU configuration can maintain good pitching moment characteristics in the whole range of low and moderate angles of attack.
[1] 任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟研究[J]. 空气动力学报, 2017, 35(3):383-391. REN X F, DUAN Z Y, WEI J L. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamic Sinica, 2017, 35(3):383-391(in Chinese).
[2] 王伟, 段卓毅, 耿建中, 等. 考虑螺旋桨滑流影响的双发涡桨飞机气动特性研究[J]. 西北工业大学学报, 2017, 35(6):1105-1111. WANG W, DUAN Z Y, GENG J Z, et al. Aerodynamics analysis of twin-turboprop aircraft with propeller slipstream effects considered[J]. Journal of Northwestern Polytechnical University, 2017, 35(6):1105-1111(in Chinese).
[3] 陈波, 缪涛, 马率, 等. 螺旋桨飞机俯仰力矩特性改进方法[J]. 航空学报, 2019, 40(2):622341. CHEN B, MIAO T, MA S, et al. Methods for improving pitching moment characteristics of a propeller airplane[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):622341(in Chinese).
[4] OBERT E D. 运输类飞机的空气动力设计[M]. 顾诵芬, 吴兴世, 杨新军, 译. 上海:上海交通大学出版社, 2010:406-407. OBERT E D. Aerodynamic design of transport aircraft[M]. GU S F, WU X S, YANG X J, translated. Shanghai:Shanghai Jiao Tong University Press, 2010:406-407(in Chinese).
[5] BOUQUET T, VOS R. Modeling the propeller slipstream effect on lift and pitching moment:AIAA-2017-0236[R]. Reston:AIAA, 2017.
[6] 程不时. 飞机设计手册第5册:民用飞机总体设计[M]. 北京:航空工业出版社, 2002:139-140. CHENG B S. Aircraft design manual vol 5:General design of civil aircraft[M]. Beijing:Aviation Industry Press, 2002:139-140(in Chinese).
[7] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997:462-464. FANG B R. Aircraft aerodynamic layout design[M]. Beijing:Aviation Industry Press, 1997:462-464. (in Chinese).
[8] RECKZEH D. Aerodynamic design of the A400M high-lift system[C]//26th International Congress of the Aeronautical Sciences, 2008.
[9] VELDHUIS L. Review of propeller-wing aerodynamic interference[C]//24th International Congress of the Aeronautical Sciences, 2004.
[10] 夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安:西北工业大学, 2015:104-109. XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an:Northwestern Polytechnical University, 2015:104-109(in Chinese).
[11] CHIRICO G, BARAKOS G, BOWN N. Propeller installation on turboprop aircraft acoustics[J]. Journal of Sound and Vibration, 2018, 424:238-262.
[12] BOUSQUET J, GARDAREIN P. Improvement on computations of high speed propeller unsteady aerodynamics[J]. Aerospace Science and Technology, 2003, 7(6):465-472.
[13] STUERMER A. Unsteady CFD simulations of propeller installation effects:AIAA-2006-4969[R]. Reston:AIAA, 2006.
[14] ROOSENBOOM E, STÜRMER A, SCHRÖDER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1):284-291.
[15] ROOSENBOOM E, STÜRMER A, SCHRÖDER A. Comparison of PIV measurements with unsteady RANS calculation in a propeller slipstream:AIAA-2009-3626[R]. Reston:AIAA, 2009.
[16] KELLER D, RUDNIK R. Numerical investigation of engine effects on a transport aircraft with circulation control[J]. Journal of Aircraft, 2015, 52(2):421-438.
[17] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):845-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):845-852(in Chinese).
[18] 张刘, 白俊强, 李华星, 等. 螺旋桨滑流与机翼之间气动干扰影响研究[J]. 航空计算技术, 2012, 42(2):87-91. ZHANG L, BAI J Q, LI H X, et al. Research on aerodynamic interference for propeller slipstream over the wing[J]. Aeronautical Computing Technique, 2012, 42(2):87-91(in Chinese).
[19] 许和勇, 叶正寅. 螺旋桨非定常滑流数值模拟[J]. 航空动力学报, 2011, 26(1):148-153. XU H Y, YE Z Y. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1):148-153(in Chinese).
[20] 马率, 邱名, 王运涛, 等. CFD在螺旋桨飞机滑流影响研究中的应用[J]. 航空学报, 2019, 40(4):622365. MA S, QIU M, WANG Y T, et al. Application of CFD in slipstream effect on propeller aircraft research[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622365(in Chinese).
[21] 钟敏, 华俊, 郑遂, 等. 大型水陆两栖飞机侧风起降的滑流影响分析[J]. 航空学报, 2019, 40(1):522372. ZHONG M, HUA J, ZHENG S, et al. Propeller slipstream interference of large amphibian aircraft under take-off and landing with crosswind[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522372(in Chinese).