固体力学与飞行器总体设计

切向流条件下短舱单/双自由度声衬实验

  • 杨嘉丰 ,
  • 薛东文 ,
  • 李卓瀚 ,
  • 黄太誉 ,
  • 徐健
展开
  • 1. 中国飞机强度研究所, 西安 710065;
    2. 航空声学与振动航空科技重点实验室, 西安 710065

收稿日期: 2020-02-03

  修回日期: 2020-02-29

  网络出版日期: 2020-03-20

Single and double degree-of-freedom acoustic liners under grazing flow: Experiment

  • YANG Jiafeng ,
  • XUE Dongwen ,
  • LI Zhuohan ,
  • HUANG Taiyu ,
  • XU Jian
Expand
  • 1. Aircraft Strength Research Institute, Xi'an 710065, China;
    2. Key Laboratory of Aeronautical Acoustics and Vibration, Xi'an 710065, China

Received date: 2020-02-03

  Revised date: 2020-02-29

  Online published: 2020-03-20

摘要

使用声学流管实验台对一件双自由度(DDOF)声衬和一件单自由度(SDOF)声衬的声学特性进行对比测试。在最大0.26Ma切向流速和管道的截止频率之下,采用直接提取法SFM测得声衬的无量纲声阻抗,同时使用双传声器分解驻波法计算声衬安装段管道的传声损失(TL)和吸声系数等,基于声能量理论的传声损失可直观地展示两件被测声衬的吸声性能差异。结果表明在流管声学实验台上,相较于单自由度声衬,双自由度声衬能够有效拓宽声衬的吸声频带,同时共振频率处的传声损失不如单自由度声衬,切向流也会明显改变声衬的共振频率、弱化吸声能力。基于声能量的传声损失和吸声系数也为无等效阻抗的非均匀结构声衬提供了一种声学性能评估方法。

本文引用格式

杨嘉丰 , 薛东文 , 李卓瀚 , 黄太誉 , 徐健 . 切向流条件下短舱单/双自由度声衬实验[J]. 航空学报, 2020 , 41(11) : 223860 -223860 . DOI: 10.7527/S1000-6893.2020.23860

Abstract

Two acoustic liners, one of Single Degree-Of-Freedom (SDOF) and the other of Double Degree-Of-Freedom (DDOF), are separately tested on a flow duct in the laboratory to compare their acoustic performance with grazing flow up to 0.26Ma. The normalized impedance of the liners is educed by Straight Forward Method (SFM), and the acoustic energy Transmission Loss (TL) and absorption coefficient of the liner-installed section are determined with the two-microphone method. The differences in acoustic performance between the two tested liners can be observed through TL as well as the impedance. Tested results show that the DDOF liner effectively broadens the sound absorption band compared with the SDOF liner on the flow duct. However, its maximum TL is less than that of SDOF. The grazing flow significantly changes the resonance frequency of the acoustic liner and weakens the sound absorption performance. Furthermore, the transmission loss and absorption coefficient based on sound energy also provide a new method for the assessment of the non-uniform structure acoustic liner which cannot be described with equivalent impedance.

参考文献

[1] FRANSSEN E, WIECHEN C, NAGELKERKE N, et al. Aircraft noise around a large international airport and its impact on general health and medication use[J]. Occupational & Environmental Medicine, 2004, 61(5):405-413.
[2] MORRELL S, TAYLOR R, LYLE D. A review of health effects of aircraft noise[J]. Australian and New Zealand Journal of Public Health, 1997, 21(2):221-236.
[3] 孙晓峰, 周盛.气动声学[M].北京:国防工业出版社,1993:75-90. SUN X F, ZHOU S. Aero-acoustics[M]. Beijing:National Defense Industrial Press, 1993:75-90(in Chinese).
[4] 乔渭阳.航空发动机气动声学[M].北京:北京航空航天大学出版社,2010:1-8. QIAO W Y. Aeroacoustics of aero-engine[M]. Beijing:Beihang University Press,2010:1-8(in Chinese).
[5] 蒋永松, 郑文涛, 赵航,等. 风扇出口导向叶片低噪声设计Ⅰ:方法与优化[J]. 航空学报, 2019, 40(10):122955. JIANG Y S, ZHENG W T, ZHAO H, et al. Low noise design of fan outlet guide vane, part Ⅰ:Method and optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122955(in Chinese).
[6] 郑文涛, 蒋永松, 赵航,等. 风扇出口导向叶片低噪声设计Ⅱ:数值验证[J]. 航空学报, 2019, 40(10):122956. ZHENG W T, JIANG Y S, ZHAO H, et al. Low noise design of fan outlet guide vane, part Ⅱ:Numerical verifications[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122956(in Chinese).
[7] 洪志亮, 赵国昌, 杨明绥,等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019, 40(11):023139. HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):023139(in Chinese).
[8] 赵奉同,景晓东,沙云东,等. 压气机内部噪声特征与转子叶片声固耦合机理分析[J]. 航空学报,2019,40(5):122669. ZHAO F T, JING X D, SHA Y D, et al. Analysis of noise characteristics and acoustic structure coupling mechanism of rotor blades in compressor[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122669(in Chinese).
[9] ZEVITAS C D, SPENGLER J D, JONES B, et al. Assessment of noise in the airplane cabin environment[J]. Journal of Exposure Science & Environmental Epidemiology, 2018, 28:568-578.
[10] 沙云东, 王建, 赵奉同,等. 高温环境下薄壁结构声疲劳失效验证技术研究[J]. 装备环境工程, 2016, 13(5):17-24. SHA Y D, WANG J, ZHAO F T, et al. Acoustic fatigue failure verification technology of thin-walled structure under high temperature environment[J]. Equipment Environmental Engineering, 2016, 13(5):17-24(in Chinese).
[11] DREVON E. Measurement methods and devices applied to a380 nacelle double degree-of-freedom acoustic liner development[C]//AIAA/CEAS Aeroacoustics Conference.Reston:AIAA, 2013.
[12] LEE F C, CHEN W H. Acoustic transmission analysis of multi-layer absorbers[J]. Journal of Sound and Vibration, 2001, 248(4):621-634.
[13] JING X D, WANG X Y, SUN X F. Broadband acoustic liner based on the mechanism of multiple cavity resonance[J]. AIAA Journal, 2007, 45(10):2429-2437.
[14] JONES M G, WATSON W R. On the use of experimental methods to improve confidence in educed impedance[C]//17th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2011.
[15] BUSSE G S, RICHTER C, LAHIRI C, et al. Impedance deduction based on insertion loss measurements of liners under grazing flow conditions[C]//14th AIAA/CEAS Conference. Reston:AIAA, 2008.
[16] MURRAY P, FERRANTE P, SCOFANO A. Manufacturing process and boundary layer influences on perforate liner impedance[C]//AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2005.
[17] QIU X H, XIN B, WU L, et al. Investigation of straightforward impedance eduction method on single-degree-of-freedom acoustic liners[J]. Chinese Journal of Aeronautics,2018,31(12):2221-2233.
[18] 李志彬, 王叙理, 王晓宇, 等. 基于传递单元方法的局域反应声衬设计与试验[J]. 航空学报, 2018, 39(8):122053. LI Z B, WANG X L, WANG X Y, et al. Design of locally reacting liner based on transfer element method and experimental validation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):122053(in Chinese).
[19] CAO Y, HUSSAINI M Y, YANG H. Estimation of optimal acoustic liner impedance factor for reduction of radiation engine noise[J]. International Journal of Numerical Analysis & Modeling, 2007, 4(4):116-126.
[20] 王晓宇, 杜林, 孙晓峰.考虑变截面影响的航空发动机短舱声学模型及数值结果[J].航空学报,2006,27(6):1073-1079. WANG X Y, DU L, SUN X F. A new approach for theacoustic design of aeroengine with the effect of varying cross-section aera[J]. Acta Aeronautica et Astronautica Sinica, 2006,27(6):1073-1079(in Chinese).
[21] WANG X Y, SUN X F. Transfer element method with application to acoustic design of aeroengine nacelle[J]. Chinese Journal of Aeronautics, 2015, 28(2):327-345.
[22] SEYBERT A F. Two-senor methods for the measurement of sound intensity and acoustic properties in duct[J]. The Journal of the Acoustical Society of America, 1988, 83(6):2233-2239.
[23] XIN B, YANG J F, JING X D, et al. Experimental and numerical investigation of anechoic termination for a duct with mean flow[J]. Applied Acoustics, 2018, 139:213-221.
[24] DAVIES P. Practical flow duct acoustics[J]. Journal of Sound and Vibration, 1988, 124(1):91-115.
[25] 季振林.消声器声学理论与设计[M].北京:科学出版社,2015:36-37. JI Z L. Acoustic theory and design of muffler[M]. Beijing:Science Press, 2015:36-37(in Chinese).
[26] JING X D, PENG S, SUN X F. A straightforward method for wall impedance eduction in a flow duct[J]. Journal of the Acoustical Society of America, 2008, 124(1):227-234.
文章导航

/