材料工程与机械制造

基于三维格子Boltzmann铝点蚀动态数值模拟

  • 杨广峰 ,
  • 路梦柯 ,
  • 薛安源 ,
  • 李虎林 ,
  • 崔静
展开
  • 中国民航大学 机场学院, 天津 300300

收稿日期: 2019-10-15

  修回日期: 2020-03-23

  网络出版日期: 2020-03-20

基金资助

国家自然科学基金(U1633111,U1933107);中国民航大学蓝天青年学者培养经费;中国民航大学科研启动经费(09QD05X)

Dynamic numerical simulation of aluminum pitting based on 3D-lattice Boltzmann method

  • YANG Guangfeng ,
  • LU Mengke ,
  • XUE Anyuan ,
  • LI Hulin ,
  • CUI Jing
Expand
  • Airport College, China Civil Aviation University, Tianjin 300300, China

Received date: 2019-10-15

  Revised date: 2020-03-23

  Online published: 2020-03-20

Supported by

National Natural Science Foundation of China (U1633111,U1933107); Blue Sky Young Scholars Training Fund of China Civil Aviation University; China Civil Aviation University Research Startup Fund (09QD05X)

摘要

铝作为目前最经济且应用最为广泛的材料之一,具有重量轻、耐腐蚀、导热性好、导电性好等优点。然而,金属铝在氯离子环境中容易发生点蚀。根据中性溶液中铝表面点蚀反应机理,结合液体流动和相变特性,建立了三维格子Boltzmann铝点蚀模型,研究了中性溶液中铝表面的点蚀现象,弥补了传统实验方法的不足。采用建立的腐蚀模型对整个铝点蚀过程进行了模拟,得到了不同组分的浓度分布以及不同参数与腐蚀程度的关系。结果表明:铝的腐蚀程度随接触时间的增加而增加。随着初始氯离子浓度的增加和腐蚀反应速率的增大,铝被腐蚀得更严重。三维格子Boltzmann铝点蚀模型为金属腐蚀数值研究提供了新的思路。

本文引用格式

杨广峰 , 路梦柯 , 薛安源 , 李虎林 , 崔静 . 基于三维格子Boltzmann铝点蚀动态数值模拟[J]. 航空学报, 2020 , 41(10) : 423582 -423582 . DOI: 10.7527/S1000-6893.2019.23582

Abstract

As one of the most economical and widely applied materials, aluminum has the advantages of light weight, corrosion resistance, and good thermal and electrical conductivity. However, aluminum is prone to pitting in chloride ion environments. Taking into account the aluminum surface pitting mechanism in neutral solution and liquid flow and phase transition characteristics, this study established a three-dimensional lattice Boltzmann model to examine the pitting phenomenon on aluminum surface in neutral solution, overcoming the deficiency of traditional experimental methods. The whole aluminum pitting process was simulated by the established corrosion model, and the concentration distribution of different components and the relationship between different parameters and corrosion degree were obtained. The results show that the degree of aluminum corrosion increases with the increase of contact time. Furthermore, the higher the initial chloride ion concentration, and the higher the corrosion reaction rate is, the more severe aluminum corrosion becomes. Therefore, the three-dimensional lattice Boltzmann aluminum pitting model provides a new approach to the future numerical study of metal corrosion.

参考文献

[1] 顾孜昌. 庆-哈输油管道腐蚀缺陷评估与补强技术研究[D]. 大庆:东北石油大学,2011. GU Z C. Research on evaluation of corrosion defects and reinforcing technology for Qing-Ha oil pipeline[D]. Daqing:Northeast Petroleum University, 2011(in Chinese).
[2] 马明利. 庆-哈输油管道腐蚀缺陷评估与补强技术研究[D]. 大庆:东北石油大学, 2011. MA M L. Research on evaluation of corrosion defects and reinforcing technology for Qing-Ha oil pipeline[D]. Daqing:Northeast Petroleum University, 2011(in Chinese).
[3] 乔贵民,任振甲,张军,等. 腐蚀介质在缓蚀剂膜中扩散行为的分子动力学模拟[J].物理化学学报,2010,26(11):3041-3046. QIAO G M, REN Z J, ZHANG J, et al. Molecular dynamics simulation of corrosive medium diffusion in corrosion inhibitor membrane[J].Acta Physico-Chimica Sinica,2010, 26(11):3041-3046(in Chinese).
[4] 李栾菊,吴海耀,马瑞娜,等. Fe2B在液锌中腐蚀的分子动力学模拟[J].河北工业大学学报, 2014, 43(2):66-71. LI L J, WU H Y, MA R N, et al. Molecular dynamics simulation of the corrosion process of Fe2B alloy in liquid zinc[J].Journal of Hebei University of Technology. 2014, 43(2):66-71(in Chinese).
[5] 刘捷,甄琦,赵灿军,等. 铁在液态铅铋合金中腐蚀的分子动力学研究[J].工程热物理学报,2017, 38(3):557-561. LIU J, ZHEN Q, ZHAO C J, et al. Corrosion study of iron liquid Lead-Bismuth eutectic in accelerator driven system of molecular dynamics method[J].Journal of Engineering Thermophysics, 2017, 38(3):557-561(in Chinese).
[6] 陈梦成,温清清. 钢材腐蚀损伤过程的元胞自动机模拟[J].中国腐蚀与防护学报, 2018, 38(1):68-73. CHEN M C, WEN Q Q. Cellular automata simulation of corrosion process for steel[J].Journal of Chinese Society for Corrosion and Protection, 2018, 38(1):68-73(in Chinese).
[7] 胡姗. 基于元胞自动机的再生水管道腐蚀模拟[D]. 天津:天津大学,2017. HU S. A cellular automaton simulation of the reclaimed water pipe corrosion[D]. Tianjin:Tianjin University, 2017(in Chinese).
[8] 芦星,曾敏,马挺,等. 基于元胞自动机法的高温金属腐蚀行为模拟[J].工程热物理学报,2016, 37(9):2016-2022. LU X, ZENG M, MA T, et al. Simulation of metal corrosion layer growth behavior under high temperature by cellular automaton method[J].Journal of Engineering Thermophysics, 2016, 37(9):2016-2022(in Chinese).
[9] 崔艳雨,赵沅沅. 基于元胞自动机法的铝合金腐蚀行为模拟[J].腐蚀与防护,2018, 39(10):794-800. CUI Y Y, ZHAO Y Y. Simulation of aluminum alloy corrosion behavior based on cellular automaton method[J].Corrosion and Protection, 2018, 39(10):794-800(in Chinese).
[10] 邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型[J].航空学报, 2018, 39(2):221421. DENG J H, CHEN P J, FU Y, et al. Parabolic model for corrosion equivalent cracks for fatigue life analysis of pre-corrosive aeroalloy aluminum alloy materials[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(2):221421(in Chinese).
[11] 张福泽. 金属任意腐蚀损伤量的日历寿命计算模型和曲线[J].航空学报, 2017, 38(9):221110. ZHANG F Z. Calendar life calculation model and curve of any metal corrosion damage[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(9):221110(in Chinese).
[12] 张福泽. 用腐蚀损伤计算金属日历寿命的原理和模型[J].航空学报, 2017, 38(11):221111. ZHANG F Z. Principles and models for calculating metal calendar life with corrosion damage[J].Acta Aeronautica et Astronautica Sinica, 2017,38(11):221111(in Chinese).
[13] LIU M, MOSTAGHIMI P. High-resolution pore-scale simulation of dissolution in porous med[J].Chemical Engineering Science, 2017, 161:360-369.
[14] NOGUES J P, FITTS J P, CELIA M A, et al. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks[J].Water Resources Research, 2013, 49(9):6006-6021.
[15] HUBER C,SHAFEI B, PARMIGIANI A,et al. A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation[J].Geochimica et Cosmochimica Acta, 2014,124(1):109-130.
[16] CHEN L,KANG Q,ROBINSON B A,et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J].Physical Review E:Statistical Nonlinear & Soft Matter Physics,2013,87(4):043306.
[17] 陈黎. 能源与环境学科中的多尺度多物理化学耦合反应输运过程数值模拟研究[D]. 西安:西安交通大学, 2017. CHEN L. Numerical investigation of multiscale multiple physicochemical coupled reactive transport processes in energy and environmental discipline[D]. Xi'an:Xi'an Jiaotong University, 2017(in Chinese).
[18] 张任良, 狄勤丰, 王新亮, 等. 基于Shan-Chen模型的格子Boltzmann方法在微流动模拟研究中的应用[J].力学与实践, 2012, 34(2):10-18. ZHANG R L, DI Q F, WANG X L, et al. The application of Shan-Chen-type lattice Boltzmann method in microfluidics simulation study[J].Mechanics in Engineering, 2012, 34(2):10-18(in Chinese).
[19] MU Y T, CHEN L, HE Y L, et al. Pore-scale modeling of dynamic interaction between SVOCs and airborne particles with lattice Boltzmann method[J].Building & Environment, 2016, 104:152-161.
[20] PEDERSEN J, JETTESTUENE E, MADLAND M V, et al. A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods[J].Advances in Water Resources, 2015, 87:68-79.
[21] ATIA A, MOHAMMEDI K. Lattice Boltzmann investigation of thermal effect on convective mixing at the edge of solvent chamber in CO2-VAPEX process[J].World Journal of Engineering, 2015, 12(4):353-362.
[22] MIN T, GAO Y, CHEN L, et al. Mesoscale investigation of reaction-diffusion and structure evolution during Fe-Al inhibition layer formation in hot-dip galvanizing[J].International Journal of Heat & Mass Transfer, 2016, 92:370-380.
[23] CHEN L, KANG Q, ROBINSON B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J].Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2013, 87(4):043306.
[24] BOXLEY C J, WATKINS J J, WHITE H S, et al. Al2O3 film dissolution in aqueous chloride solutions[J].Electrochemical and Solid-State Letters, 2003, 6(10):B38.
[25] KANG Q, LICHTNER P C, ZHANG D, et al. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media[J].Journal of Geophysical Research Solid Earth, 2006, 111(B5):1-9.
[26] KANG Q, ZHANG D, CHEN S, et al. Lattice Boltzmann simulation of chemical dissolution in porous media[J].Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2002, 65(3):036318.
[27] KANG Q, LICHTNER P C, VISWANATHAN H S, et al. Pore scale modeling of reactive transport involved in geologic CO2 sequestration[J].Transport in Porous Media, 2010, 82(1):197-213.
[28] LI L, LI X G, DONG C F, et al. Cellular automata modeling on pitting current transients[J].Electrochemistry Communications, 2009, 11(9):1826-1829.
[29] XU X, LIU D, AO N, et al. Effects of pre-corrosion on mechanical properties of 7B50-T7751 aluminum alloy in sodium chloride solution[J].Materials and Corrosion, 2018, 69(7):870-880.
[30] SANCHEZ-PEREZ J, ALHAMA F, MORENO J, et al. Study of main parameters affecting pitting corrosion in a basic medium using the network method[J].Results in Physics, 2019(12):1015-1025.
[31] MCCAFFERTY E. Sequence of steps in the pitting of aluminum by chloride ions[J].Corrosion Science, 2003, 45(7):1421-1438.
文章导航

/