流体力学与飞行力学

针栓式喷注单元膜束撞击雾化混合过程数值模拟

  • 王凯 ,
  • 雷凡培 ,
  • 杨岸龙 ,
  • 杨宝娥 ,
  • 周立新
展开
  • 1. 西安航天动力研究所 液体火箭发动机技术重点实验室, 西安 710100;
    2. 中国船舶工业集团有限公司, 北京 100044

收稿日期: 2020-01-03

  修回日期: 2020-02-15

  网络出版日期: 2020-03-13

基金资助

国家自然科学基金(11502186)

Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element

  • WANG Kai ,
  • LEI Fanpei ,
  • YANG Anlong ,
  • YANG Baoe ,
  • ZHOU Lixin
Expand
  • 1. Key Laboratory for Liquid Rocket Engine Technology, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
    2. China State Shipbuilding Corporation, Beijing 100044, China

Received date: 2020-01-03

  Revised date: 2020-02-15

  Online published: 2020-03-13

Supported by

National Natural Science Foundation of China (11502186)

摘要

为了全面认识针栓式喷注器喷雾场结构,基于自适应网格加密技术和分三相计算的PLIC VOF(Piecewise Linear Interface Calculation Volume of Fluid)方法对针栓式喷注单元膜束撞击雾化混合过程进行了仿真分析,通过对两路推进剂分别进行界面追踪,获得了膜束撞击雾化混合过程的详细结构特征,与高速摄影试验结果定性定量对比均吻合较好,验证了数值方法的准确性。以此为基础对膜束撞击的喷雾场结构、撞击变形过程、流场涡结构、雾化破碎典型特征及破碎后的雾化混合分布特征进行了识别分析,结果表明:膜束撞击形成了液束未穿透液膜和液束穿透液膜2种不同的喷雾扇结构。膜束撞击形成的喷雾扇呈"Ω"形,膜束同时发生弯曲变形和横截面变形。另外,膜束撞击同时受到正压和剪切应力作用,导致了一系列复杂涡流现象,使得相互作用增强,雾化混合均增强,这也是膜束撞击喷注构型优于膜膜撞击的本质原因。最后,还发现膜束撞击喷雾场液滴分布呈现分区结构特征,分别是液束控制主导的上雾化区、液膜控制主导的下雾化区及夹在中间的混合区,实际中应兼顾雾化特性和混合特性,选取中等动量比膜束撞击,这可为针栓式喷注器的理论研究和工程设计提供重要参考。

本文引用格式

王凯 , 雷凡培 , 杨岸龙 , 杨宝娥 , 周立新 . 针栓式喷注单元膜束撞击雾化混合过程数值模拟[J]. 航空学报, 2020 , 41(9) : 123802 -123802 . DOI: 10.7527/S1000-6893.2020.23802

Abstract

To fully understand the spray field structure of pintle injectors, this study simulate and analyze the spray and mixing process of impingement between a liquid sheet and a liquid jet in a pintle injector element, based on the adaptive mesh refinement technology and PLIC VOF (Piecewise Linear Interface Calculation Volume of Fluid) method in which three phases are separately calculated. The detailed structural characteristics are obtained in the impinging and atomizing mixing process by tracking the phase interfaces of the two propellants respectively. These characteristics are compared qualitatively and quantitatively with the results of the high-speed photography test, showing good agreement, and verifying the accuracy of the numerical method. Furthermore, the spray field structure, the impact deformation process, the vortex structure, the typical characteristics of spray and breakup, and the distribution characteristics of spray and mixing are identified and analyzed. Results show that two different spray fan structures are formed, namely, the jet not penetrating the liquid sheet and the jet penetrating the liquid sheet. The spray fan formed by the impingement is in the shape of "Ω", with the bending deformation and the cross-sectional deformation occurring simultaneously for both the liquid sheet and liquid jet. In addition, the impingement is simultaneously subjected to positive pressure and shear stress, resulting in a series of complex vortex phenomena, and consequently enhancing the interaction and the spray and mixing process. This is also the essential reason why the injection configuration of the impingement between a sheet and a jet is superior to that between two sheets. Finally, it is also discovered that the droplet distribution in the spray field is characterized by the regional structures, namely, the upper spray zone dominated by the liquid jet, the lower spray zone dominated by the liquid sheet, and the mixing zone sandwiched in between. The spray characteristics and mixing characteristics should be considered comprehensively in practice, and the middle momentum ratio should be selected to provide important reference for theoretical research and engineering design of pintle injectors.

参考文献

[1] 安鹏, 姚世强, 王京丽, 等. 针栓式喷注器的特点及设计方法[J]. 导弹与航天运载技术, 2016(3):50-54. AN P, YAO S Q, WANG J L, et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles, 2016(3):50-54(in Chinese).
[2] 岳春国, 李进贤, 侯晓, 等. 变推力液体火箭发动机综述[J]. 中国科学E辑:技术科学, 2009, 39(3):464-468. YUE C G, LI J X, HOU X, et al. Summarization on variable liquid thrust rocket engines[J]. Science in China Series E:Technological Sciences, 2009, 39(3):464-468(in Chinese).
[3] 袁宇. 猎鹰火箭发动机设计特点[J]. 太空探索, 2017(7):19-20. YUAN Y. Design features of falcon rocket engine[J]. Space Exploration, 2017(7):19-20(in Chinese).
[4] DRESSLER G A. Summary of deep throttling rocket engines with emphasis on apollo lmde:AIAA-2006-5220[R]. Reston:AIAA,2006.
[5] ELVERUM G, HOFFMAN A, MILLER J, et al. The descent engine for the lunar module[C]//3rd Propulsion Joint Specialist Conference, 1967.
[6] GILROY R, SACKHEIM R. The lunar module descent engine a historical summary:AIAA-1989-2385[R]. Reston:AIAA, 1989.
[7] 王福民, 旷武岳. 美国太空探索技术公司(SpaceX)及其"猎鹰"系列运载火箭[R]. 西安:西安航天动力研究所, 2012:5. WANG F M, KUANG W Y. SpaceX and its falcon series of launch vehicles[R]. Xi'an:Xi'an Aerospace Propulsion Institute, 2012:5(in Chinese).
[8] 张雪松. 猎鹰火箭的基础:不断升级的梅林发动机[J]. 卫星与网络, 2017(6):40-41. ZHANG X S. Foundation of falcon rocket:Upgrading merlin engine[J]. Satellite and Network, 2017(6):40-41(in Chinese).
[9] HEISTER S D. Pintle injectors,handbook of atomization and sprays:Theory and applications[M]. New York:Springer, 2011:647-655.
[10] BOETTCHER P A, DAMAZO J S, SHEPHERD J E, et al. Visualization of transverse annular jets[C]//62nd Annual Meeting of the APS Division of Fluid Dynamic. Minneapolis:American Physical Society, 2009.
[11] SAKAKI K, KAKUDO H, NAKAYA S, et al. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J]. Journal of Propulsion and Power, 2017, 33(2):514-521.
[12] SAKAKI K, KAKUDO H, NAKAYA S, et al. Optical measurements of ethanol/liquid oxygen rocket engine combustor with planar pintle injector:AIAA-2015-3845[R].Reston:AIAA, 2015.
[13] SAKAKI K, KAKUDO H, NAKAYA S, et al. Performance evaluation of rocket engine combustors using ethanol/liquid oxygen pintle injector:AIAA-2016-5080[R]. Reston:AIAA, 2016.
[14] CHENG P, LI Q L, XU S, et al. On the prediction of spray angle of liquid-liquid pintle injectors[J]. Acta Astronautica, 2017, 138:145-151.
[15] 成鹏. 变推力火箭发动机喷雾燃烧动态过程研究[D]. 长沙:国防科技大学, 2018:12. CHENG P. The dynamics of spray combustion in variable thrust rocket engines[D]. Changsha:National University of Defense Technology, 2018:12(in Chinese).
[16] 刘昌波. 针栓式喷注器雾化特性的多尺度仿真研究[D]. 西安:西安航天动力研究所, 2014:9. LIU C B. Multiscale simulations of primary atomization for the pintle injector[D]. Xi'an:Xi'an Aerospace Propulsion Institute, 2014:9(in Chinese).
[17] 郑刚. 液体火箭发动机燃烧室喷注单元雾化特性研究[D]. 北京:装备学院, 2016:4. ZHENG G. Study on atomization characteristics of injector unit in liquid rocket engine combustion chamber[D]. Beijing:The Academy of Equipment, 2016:4(in Chinese).
[18] SON M,YU K,RADHAKRISHNAN K, et al. Verification on spray simulation of a pintle injector for liquid rocket engine[J]. Journal of Thermal Science, 2016, 25(1):90-96.
[19] RADHAKRISHNAN K, SON M, LEE K, et al. Effect of injection conditions on mixing performance of pintle injector for liquid rocket engine[J]. Acta Astronautica, 2018, 150:105-116.
[20] POPINET S. Gerris:A tree-based adaptive solver for the incompressible euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190:572-600.
[21] POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16):5838-5866.
[22] SALVADOR F J, ROMERO J V, ROSELLÓM D, et al. Numerical simulation of primary atomization in diesel spray at low injection pressure[J]. Journal of Computational and Applied Mathematics, 2016, 291:94-102.
[23] MEHRAVARAN K. Direct simulations of primary atomization in moderate-speed diesel fuel injection[J]. International Journal of Materials, Mechanics and Manufacturing, 2013, 1(2):207-209.
[24] MA D J, CHEN X D, KHAR P, et al. Atomization patterns and breakup characteristics of liquid sheets formed by two impinging jets:AIAA-2011-97[R].Reston:AIAA, 2011.
[25] CHEN X D, MA D J, YANG V, et al. High-fidelity simulations of impinging jet atomization[J]. Atomization and Sprays, 2013, 23(12):1079-1101.
[26] CHEN X D, MA D J, YANG V. Mechanism study of impact wave in impinging jets atomization:AIAA-2012-1089[R].Reston:AIAA, 2012.
[27] 李佳楠, 费俊, 杨伟东,等. 直流互击式喷注单元雾化特性准直接数值模拟[J]. 推进技术, 2016, 37(4):713-725. LI J N, FEI J, YANG W D, et al. Quasi-direct numerical simulation on atomization characteristics of impinging jets injector[J]. Journal of Propulsion Technology, 2016, 37(4):713-725(in Chinese).
[28] 王凯, 李鹏飞, 杨国华,等. 相邻离心式喷嘴液膜撞击雾化过程仿真[J]. 推进技术, 2017, 38(2):408-415. WANG K, LI P F, YANG G H, et al. Simulation on liquid films impact atomization process of adjacent pressure swirl injectors[J]. Journal of Propulsion Technology, 2017, 38(2):408-415(in Chinese).
[29] 张培玉. 基于VOF方法的撞击雾化及旋流雾化稳定性机制研究[D]. 北京:清华大学, 2016:6. ZHANG P Y. Investigation of stability mechanism of impinging jets atomization and swirl spray based on VOF method[D].Beijing:Tsinghua University, 2016:6(in Chinese).
[30] 王凯, 杨国华, 李鹏飞,等. 基于Gerris的离心式喷嘴锥形液膜破碎过程数值模拟[J]. 推进技术, 2018, 39(5):1041-1050. WANG K, YANG G H, LI P F, et al. Numerical simulation on conical liquid sheet breakup process of pressure swirl injector based on Gerris[J]. Journal of Propulsion Technology, 2018, 39(5):1041-1050(in Chinese).
[31] FUSTER D, BAGUÉ A, POPINET S, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[J]. International Journal of Multiphase Flow, 2009, 35(6):550-565.
[32] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computation fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[33] 杨国华, 张波涛, 周立新, 等. 液气动量比对内混式直流气液喷嘴雾化特性的影响[J]. 火箭推进, 2019, 45(5):66-73. YANG G H, ZHANG B T, ZHOU L X, et al. Effects of momentum ratio on atomization characteristics of internal mixing gas-liquid injector[J]. Journal of Rocket Propulsion, 2019, 45(5):66-73(in Chinese).
[34] 王凯, 杨国华, 李鹏飞, 等. 离心式喷嘴内部流动过程数值仿真分析[J]. 火箭推进, 2016, 42(4):14-20. WANG K, YANG G H, LI P F, et al. Numerical simulation of internal flow process in pressure swirl injector[J]. Journal of Rocket Propulsion, 2016, 42(4):14-20(in Chinese).
[35] KELSO R M, LIM T T, PERRY A E. An experimental study of round jets in cross-flow[J]. Journal of Fluid Mechanics, 1996, 306:111-144.
[36] NEW T H, LIM T T, LUO S C. Effects of jet velocity profiles on a round jet in cross-flow[J]. Experiments in Fluids, 2006, 40:859-875.
[37] ZHANG Y N, WANG X Y, LIU C Q. Comparisons of and analyses of vortex identification between omega method and Q criterion[J]. Journal of Hydrodynamics, 2019, 31(2):224-230.
[38] SHINJOA J, UMEMURA A. Simulation of liquid jet primary breakup:Dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow, 2010, 36:513-532.
[39] DOMBROWSKI N, HOPPER P. The aerodynamics instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18(3):203-214.
文章导航

/