电子电气工程与控制

单推力航天器交会对接轨迹规划及跟踪控制

  • 耿远卓 ,
  • 李传江 ,
  • 郭延宁 ,
  • James Douglas BIGGS
展开
  • 1. 哈尔滨工业大学 航天学院, 哈尔滨 150001;
    2. Politecnico di Milano, Department of Aerospace Science and Technology, Milano 20156

收稿日期: 2020-02-18

  修回日期: 2020-02-26

  网络出版日期: 2020-03-06

基金资助

国家自然科学基金(61973100,61673135,61876050);国家留学基金

Rendezvous and docking of spacecraft with single thruster: Path planning and tracking control

  • GENG Yuanzhuo ,
  • LI Chuanjiang ,
  • GUO Yanning ,
  • James Douglas BIGGS
Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. Department of Aerospace Science and Technology, Politecnico di Milano, Milano 20156, Italy

Received date: 2020-02-18

  Revised date: 2020-02-26

  Online published: 2020-03-06

Supported by

National Natural Science Foundation of China (61973100, 61673135, 61876050); China Scholarship Council

摘要

针对单推力航天器交会对接问题,提出一种轨迹规划及跟踪算法。首先,考虑到追踪航天器只沿本体X轴安装推力器,且推力方向固定,为了实现从起始位置转移至期望位置并满足姿态要求,基于三维螺旋线设计两阶段转移轨迹,根据初末位置以及末端速度方向要求,求解螺旋线参数。该螺旋线可以保证在初末速度方向固定情况下,曲率积分最小。其次,为了降低轨迹跟踪难度并减小初始时刻的位置跟踪控制力,需要将转移轨迹初始速度与追踪星X轴重合。传统螺旋线无法满足该约束条件。本文对传统螺旋线进行改进,提出一种旋转螺旋线轨迹设计方法。通过引入姿态旋转矩阵,将螺旋线在三维空间旋转,在不改变曲线形状的前提下满足初末位置及速度方向要求。然后,为了跟踪转移轨迹以及跟踪期望推力方向,提出基于CLF(Control Lyapunov Function)的滑模控制策略,当追踪星X轴与期望推力方向夹角较大时,采用CLF,保证最优性;当姿态误差收敛至滑模面附近时,切换为滑模控制,以提升系统鲁棒性。最后,通过仿真验证旋转螺旋线相比于传统螺旋线的优势。

本文引用格式

耿远卓 , 李传江 , 郭延宁 , James Douglas BIGGS . 单推力航天器交会对接轨迹规划及跟踪控制[J]. 航空学报, 2020 , 41(9) : 323880 -323880 . DOI: 10.7527/S1000-6893.2020.23880

Abstract

A novel path planning and tracking control approach is proposed for rendezvous and docking of spacecraft with a single thruster. Firstly, since the thruster is fixed along the X axis of the spacecraft, the transfer trajectory of the spacecraft from the initial position to the desired position is designed as a helix whose parameters are calculated to ensure that the initial point and final velocity of the trajectory are in accordance with those of the spacecraft. The curvature of the trajectory can be minimized by the proposed helical motion. Secondly, to reduce the difficulty in trajectory tracking and decrease the amplitude of the control torque, this paper proposes an improved helical motion by rotating the traditional helical line with appropriate angles in 3-D space. In this way, the initial direction of the trajectory can be aligned with the X axis of the spacecraft, while the curvature integral of the curve is minimized. Furthermore, to track the planned trajectory and the desired force direction, a sliding mode based Control Lyapunov Function (CLF) method is presented. When the angle between the X axis and the desired control force direction is large, the standard CLF law is adopted. Then the control law switches to sliding mode control in the case that the states are near the sliding mode surface. Simulations are conducted to show the superiority of the proposed rotated helical motions to traditional approaches.

参考文献

[1] HAND E. Interplanetary small satellites come of age[J]. Science,2018,36(6404):736-737.
[2] ROMERO C A, BIGGS J, TOPPUTO F. Attitude control for the LUMIO CubeSat in deep space[C]//70th International Astronautical Congress (IAC 2019), 2019:1-13.
[3] HE Q, LI J, HAN C. Multiple-revolution solutions of the transverse-eccentricity-based lambert problem[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):265-269.
[4] YANG Z, LUO Y Z, ZHANG J, et al. Homotopic perturbed Lambert algorithm for long-duration rendezvous optimization[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(11):2215-2223.
[5] SUN L, HUO W. 6-DOF integrated adaptive backstepping control for spacecraft proximity operations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2433-2443.
[6] CAPELLO E, PUNTA E, DABBENE F, et al. Sliding-mode control strategies for rendezvous and docking maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(6):1481-1487.
[7] 卢山, 徐世杰. 航天器椭圆轨道自主交会的自适应学习控制策略[J]. 航空学报, 2009, 30(1):127-131. LU S, XU S J. Adaptive learning control strategy for autonomous rendezvous of spacecrafts on elliptical orbit[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1):127-131(in Chinese).
[8] BIGGS J D, NEGRI A. Orbit-attitude control in a circular restricted three-body problem using distributed reflectivity devices[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(12):2712-2721.
[9] LIU X, MENG Z, YOU Z. Adaptive collision-free formation control for under-actuated spacecraft[J]. Aerospace Science and Technology, 2018, 79:223-232.
[10] INVERNIZZI D, LOVERA M, ZACCARIAN L. Dynamic attitude planning for trajectory tracking in thrust-vectoring UAVs[J]. IEEE Transactions on Automatic Control, 2019, 65(1):453-460.
[11] HAGHIGHI R, PANG C K. Robust concurrent attitude-position control of a swarm of underactuated nanosatellites[J]. IEEE Transactions on Control Systems Technology, 2017, 26(1):77-88.
[12] HUANG X, YAN Y. Saturated backstepping control of underactuated spacecraft hovering for formation flights[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1988-2000.
[13] MURALIDHARAN V, EMAMI M R. Concurrent rendezvous control of underactuated spacecraft[J]. Acta Astronautica, 2017, 138:28-42.
[14] CHEN Y, HE Z, ZHOU D, et al. Integrated guidance and control for microsatellite real-time automated proximity operations[J]. Acta Astronautica, 2018, 148:175-185.
[15] YOSHIMURA Y. Optimal formation reconfiguration of satellites under attitude constraints using only thrusters[J]. Aerospace Science and Technology, 2018, 77:449-457.
[16] ASHRAFIUON H, NERSESOV S, CLAYTON G. Trajectory tracking control of planar underactuated vehicles[J]. IEEE Transactions on Automatic Control, 2016, 62(4):1959-1965.
[17] BIGGS J D, HENNINGER H. Motion planning on a class of 6-D Lie groups via a covering map[J]. IEEE Transactions on Automatic Control, 2018, 64(9):3544-3554.
[18] HENNINGER H C, BIGGS J D. Optimal under-actuated kinematic motion planning on the ε-group[J]. Automatica, 2018, 90:185-195.
[19] MITANI S, YAMAKAWA H. Novel nonlinear rendezvous guidance scheme under constraints on thrust direction[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6):1656-1671.
[20] MITANI S, YAMAKAWA H. Continuous-thrust transfer with control magnitude and direction constraints using smoothing techniques[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1):163-174.
[21] LUO Y, ZHANG J, TANG G. Survey of orbital dynamics and control of space rendezvous[J]. Chinese Journal of Aeronautics, 2014, 27(1):1-11.
[22] BIGGS J, HOLDERBAUM W, JURDJEVIC V. Singularities of optimal control problems on some 6-D Lie groups[J]. IEEE Transactions on Automatic Control, 2007, 52(6):1027-1038.
[23] BIGGS J, HOLDERBAUM W. Integrable quadratic Hamiltonians on the Euclidean group of motions[J]. Journal of Dynamical and Control Systems, 2010, 16(3):301-317.
[24] BIGGS J, HOLDERBAUM W. Planning rigid body motions using elastic curves[J]. Mathematics of Control, Signals, and Systems, 2008, 20(4):351-367.
[25] GENG Y, LI C, GUO Y, et al. Fixed-time near-optimal control for repointing maneuvers of a spacecraft with nonlinear terminal constraints[J]. ISA Transactions, 2020,97:401-414.
[26] PUKDEBOON C, ZINOBER A S I. Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft[J]. Journal of the Franklin Institute, 2012, 349(2):456-475.
[27] PUKDEBOON C, KUMAM P. Robust optimal sliding mode control for spacecraft position and attitude maneuvers[J]. Aerospace Science and Technology, 2015, 43:329-342.
[28] DAS M, MAHANTA C. Optimal second order sliding mode control for nonlinear uncertain systems[J]. ISA Transactions, 2014, 53(4):1191-1198.
[29] PRIMBS J A, NEVISTIĆ V, DOYLE J C. Nonlinear optimal control:A control Lyapunov function and receding horizon perspective[J]. Asian Journal of Control, 1999, 1(1):14-24.
[30] SONTAG E D. A ‘universal’ construction of Artstein's theorem on nonlinear stabilization[J]. Systems & Control Letters, 1989, 13(2):117-123.
[31] 刘将辉, 李海阳, 张政, 等. 相对失控翻滚目标悬停的自适应模糊滑模控制[J]. 航空学报, 2019, 40(5):322430. LIU J H, LI H Y, ZHANG Z, et al. Adaptive fuzzy sliding mode control for body-fixed hovering over uncontrolled tumbling satellite[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):322430(in Chinese).
[32] 陈弈澄, 齐瑞云, 张嘉芮, 等. 混合小推力航天器轨道保持高性能滑模控制[J]. 航空学报, 2019, 40(7):322430. CHEN Y C, QI R Y, ZHANG J R, et al. High performance sliding mode control for orbit keeping of spacecraft using hybrid low-thrust propulsion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322430(in Chinese).
[33] LEMMER K. Propulsion for cubesats[J]. Acta Astronautica, 2017, 134:231-243.
文章导航

/