空天往返飞行器制导控制技术专栏

高超声速飞行器气动伺服弹性的自适应抑制

  • 朴敏楠 ,
  • 陈志刚 ,
  • 孙明玮 ,
  • 陈增强
展开
  • 1. 南开大学 人工智能学院, 天津 300350;
    2. 空间物理重点实验室, 北京 100076

收稿日期: 2019-12-04

  修回日期: 2020-01-15

  网络出版日期: 2020-03-06

基金资助

国家自然科学基金(61573197,61973175,51777013)

Adaptive aeroservoelasticity suppression of hypersonic vehicles

  • PIAO Minnan ,
  • CHEN Zhigang ,
  • SUN Mingwei ,
  • CHEN Zengqiang
Expand
  • 1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
    2. Science and Technology on Space Physics Laboratory, Beijing 100076, China

Received date: 2019-12-04

  Revised date: 2020-01-15

  Online published: 2020-03-06

Supported by

National Natural Science Foundation of China (61573197, 61973175, 51777013)

摘要

针对弹性高超声速飞行器的气动伺服弹性问题,提出一种结合线性自抗扰和自适应陷波器的综合控制方案。针对强耦合和强不确定性问题,采用线性自抗扰控制对总扰动进行快速估计和补偿。为了在最小化对刚体控制性能影响的同时实现对频率未知且时变的弹性模态的抑制,采用能够在线估计弹性频率的自适应陷波器。根据气动伺服弹性抑制问题的特点提炼出对自适应陷波器的性能需求。针对这些需求设计了两种基于递推最大似然法的多频率直接辨识方案——参数单独自适应和同时自适应方案。为了提高辨识算法在各种随机扰动下的鲁棒性,在此基础上提出一种在线有效性监督机制,并通过大量的数字仿真对两种方案进行了性能对比。最后,在弹性高超声速飞行器模型上进行仿真,仿真结果验证了所提控制方案的有效性。

本文引用格式

朴敏楠 , 陈志刚 , 孙明玮 , 陈增强 . 高超声速飞行器气动伺服弹性的自适应抑制[J]. 航空学报, 2020 , 41(11) : 623698 -623698 . DOI: 10.7527/S1000-6893.2020.23698

Abstract

A comprehensive control scheme combining active disturbance rejection control and an adaptive notch filter is proposed in this paper for the aeroservoelasticity suppression of hypersonic vehicles. For the strong coupling effects and uncertainties, active disturbance rejection control is employed to estimate and compensate the total disturbance in a fast manner. An adaptive notch filter is designed to suppress the flexible modes with unknown and time-varying frequencies and minimize the effect on the performance of the rigid-body control. Based on the characteristics of the aeroservoelasticity suppression problem, the performance requirements for the adaptive notch filter are proposed first. To meet these requirements, two schemes based on the recursive maximum likelihood algorithm, the individual and simultaneous adaptation schemes, respectively, are proposed to achieve direct estimation of multiple frequencies. An online supervision strategy is designed to improve the robustness of the adaptive algorithm under multiple perturbations. Extensive numerical simulations are conducted to compare the performance of these two schemes. Finally, simulations are performed on the flexible hypersonic vehicle model to validate the effectiveness of the proposed method.

参考文献

[1] ZONG Q, WANG F, TIAN B, et al. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78(1):289-315.
[2] ZONG Q, WANG J, TIAN B, et al. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle[J]. Aerospace Science and Technology, 2013, 27(1):127-137.
[3] HU X, WU L, HU C, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2012, 349(2):559-577.
[4] XU B, WANG D, ZHANG Y, et al. DOB-based neural control of flexible hypersonic flight vehicle considering wind effects[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11):8676-8685.
[5] GUO Z, ZHOU J, GUO J, et al. Coupling-characterization-based robust attitude control scheme for hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6350-6361.
[6] WANG N, WU H, GUO L, et al. Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles[J]. Nonlinear Dynamics, 2014, 78(3):2141-2159.
[7] 王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3):320287. WANG X, GUO J, TANG S J, et al. Robust nonsingular Terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):320287(in Chinese).
[8] 骆长鑫, 张东洋, 雷虎民, 等. 输入受限的高超声速飞行器鲁棒反演控制[J]. 航空学报, 2018, 39(4):321801. LOU C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):321801(in Chinese).
[9] 肖地波, 陆宇平, 刘燕斌, 等. 应用保护映射理论的高超声速飞行器自适应控制律设计[J]. 航空学报, 2015, 36(10):3327-3337. XIAO D B, LU Y P, LIU Y B, et al. Adaptive control law design using guardian maps theory for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3327-3337(in Chinese).
[10] PIAO M, YANG Z, SUN M, et al. Synthesis of attitude control for statically unstable hypersonic vehicle with low-frequency aero-servo-elastic effect[J]. Aerospace Science and Technology, 2018,80:67-77.
[11] LEVIN J, IOANNOU P, MIRMIRANI M. Adaptive mode suppression scheme for an aeroelastic airbreathing hypersonic cruise vehicle[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA, 2008.
[12] 楚龙飞, 吴志刚, 杨超, 等. 导弹自适应结构滤波器的设计与仿真[J]. 航空学报, 2011, 32(2):195-201. CHU L F, WU Z G, YANG C, et al. Design and simulation of adaptive structure filter for missiles[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):195-201(in Chinese).
[13] 孟中杰, 闫杰. 高超声速弹性飞行器振动模态自适应抑制技术[J]. 宇航学报, 2011, 32(10):2164-2168. MENG Z J, YAN J. Adaptive modal suppression for hypersonic aeroelastic vehicle[J]. Journal of Astronautics, 2011, 32(10):2164-2168(in Chinese).
[14] 王佩, 张科, 吕梅柏, 等. 基于微分估计和弹性辨识的火箭姿态控制器设计[J]. 西北工业大学学报, 2017, 35(4):578-585. WANG P, ZHANG K, LV M B, et al. Launch vehicle attitude controller design based on differential estimation and elastic identification[J]. Journal of Northwestern Polytechnical University, 2017, 35(4):578-585(in Chinese).
[15] OH C, BANG H, PARK C S, et al. Attitude control of a flexible launch vehicle using an adaptive notch filter:Ground experiment[J]. Control Engineering Practice, 2008, 16(1):30-42.
[16] 赵党军, 王永骥, 刘磊, 等. 弹性运载火箭自适应姿态控制[J]. 广西大学学报(自然科学版), 2011, 36(6):1004-1008. ZHAO D J, WANG Y J, LIU L, et al. Adaptive attitude control of flexible launch vehicle[J]. Journal of Guangxi University (Natural Science Edition), 2011, 36(6):1004-1008(in Chinese).
[17] 刘昆, 孙平. 固体运载器姿态控制系统自适应滤波器设计[J]. 国防科技大学学报, 2010, 32(5):44-48. LIU K, SUN P. An adaptive notch filter for solid launcher attitude control system[J]. Journal of National University of Defense Technology, 2010, 32(5):44-48(in Chinese).
[18] 吴云洁, 宋嘉赟, 刘晓东, 等. 推力矢量防空导弹伺服弹性的抑制[J]. 北京航空航天大学学报, 2013, 39(11):1480-1485. WU Y J, SONG J X, LIU X D, et al. Suppression in aeroservoelasticity in anti-aircraft missile using thrust vector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11):1480-1485(in Chinese).
[19] PIAO M, ZHANG Y, SUN M, et al. Adaptive aeroservoelastic mode stabilization of flexible airbreathing hypersonic vehicle[J]. Journal of Vibration and Control, 2019, 25(15):2124-2142.
[20] HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[21] GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//American Control Conference, 2003:4989-4996.
[22] PIAO M, YANG Z, SUN M, et al. A practical attitude control scheme for hypersonic vehicle based on disturbance observer[J]. Journal of Aerospace Engineering, Proceedings of the Institution of Mechanical Engineers Part G, 2019, 233(12):4523-4540.
[23] 孙明玮, 马顺健, 朴敏楠, 等. 高超声速飞行器自抗扰控制方法[M]. 北京:科学出版社, 2018:119-146. SUN M W, MA S J, PIAO M N, et al. Active disturbance rejection control design for hypersonic vehicle[M]. Beijing:Science Press, 2018:119-146(in Chinese).
[24] PEI S, TSENG C. A novel structure for cascade form adaptive notch filters[J]. Signal Processing, 1993, 33(1):95-110.
[25] NG T, CHICHARO J F. IIR notch filtering-comparisons of four adaptive algorithms for frequency estimation[C]//International Symposium on Circuits and Systems, 1995:865-868.
[26] FIORENTINI L. Nonlinear adaptive controller for air-breathing hypersonic vehicles[D]. Columbus:The Ohio State University, 2010:79-81
[27] NEHORAI A. A minimal parameter adaptive notch filter with constrained poles and zeros[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4):983-996.
[28] NG T. Some aspects of an adaptive digital notch filter with constrained poles and zeros[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(2):158-161.
[29] LI G. A stable and efficient adaptive notch filter for direct frequency estimation[J]. IEEE Transactions on Signal Processing, 1997, 45(8):2001-2009.
[30] CHEN B, YANG T, LIN B, et al. Adaptive notch filter by direct frequency estimation[J]. Signal Processing, 1992, 27(2):161-176.
[31] 朴敏楠. 基于扩张状态观测器的高超声速飞行器姿态控制研究[D]. 天津:南开大学, 2018:61-69. PIAO M N. Research on extended state observer based attitude control for hypersonic vehicles[D]. Tianjin:Nankai University, 2018:61-69(in Chinese).
文章导航

/