[1] ANGULO Á, ALLWRIGHT J, MARES C, et al. Finite element analysis of crack growth for structural health monitoring of mooring chains using ultrasonic guided waves and acoustic emission[J]. Procedia Structural Integrity, 2017, 5:217-224.
[2] 杨伟博, 袁慎芳, 邱雷. 基于Lamb波的平尾大轴裂纹扩展监测[J].振动·测试与诊断, 2018, 38(1):143-147, 211-212. YANG W B,YUAN S F,QIU L. Crack growth monitoring of horizontal stabilizer shaft based on Lamb wave[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(1):143-147, 211-212(in Chinese).
[3] 李政鸿, 徐武, 张晓晶, 等. 多孔多裂纹平板的疲劳裂纹扩展试验与分析方法[J]. 航空学报, 2018, 39(7):221867. LI Z H, XU W, ZHANG X J, et al. Experimental and analytical analyses of fatigue crack growth in sheets with multiple holes and cracks[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):221867(in Chinese).
[4] 赵晓辰, 吴学仁, 童第华, 等. 无限板孔边裂纹问题的高精度解析权函数解[J]. 航空学报, 2018, 39(9):221976. ZHAO X C,WU X R, DONG D H, et al. Accurate analytical weight function solutions for crack at edge of circular hole in infinite plate[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):221976(in Chinese).
[5] MASSEREY B, FROMME P. Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection[J]. Ultrasonics, 2017, 76:78-86.
[6] CHO H, LISSENDEN C J. Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves[J]. Structural Health Monitoring, 2012, 11(4):393-404.
[7] VERSTRYNGE E, DE WILDER K, DROUGKAS A, et al. Crack monitoring in historical masonry with distributed strain and acoustic emission sensing techniques[J]. Construction and Building Materials, 2018, 162:898-907.
[8] 王建国, 李璐, 王连庆, 等. Ⅰ-Ⅲ型复合加载下铝合金疲劳裂纹扩展速率[J]. 北京科技大学学报, 2011, 33(6):734-738. WANG J G, LI L, WANG L Q, et al. Fatigue crack growth rate of aluminum alloys under Ⅰ-Ⅲ combined loading[J]. Journal of University of Science and Technology Beijing, 2011, 33(6):734-738(in Chinese).
[9] COLOMBO C, DU Y, JAMES M N, et al. On crack tip shielding due to plasticity-induced closure during an overload[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(12):766-777.
[10] SALVATI E, O'CONNOR S, SUI T, et al. A study of overload effect on fatigue crack propagation using EBSD, FIBDIC and FEM methods[J]. Engineering Fracture Mechanics, 2016, 167:210-223.
[11] 陈健, 袁慎芳, 王卉, 等. 基于高斯权值-混合建议分布粒子滤波的疲劳裂纹扩展预测[J]. 航空学报, 2017, 38(11):220925. CHEN J, YUAN S F, WANG H, et al. Using Gaussian weighting-mixture proposal distribution particle filter for fatigue crack growth prediction[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):220925(in Chinese).
[12] CHAPETTI M D, STEIMBREGER C. A simple fracture mechanics estimation of the fatigue endurance of welded joints[J]. International Journal of Fatigue, 2019, 125:23-34.
[13] 柴国钟, 吕君, 鲍雨梅, 等. 表面裂纹疲劳扩展和寿命计算的高效高精度数值分析方法[J]. 航空学报, 2017, 38(12):221291. CHAI G Z, LV J, BAO Y M, et al. A highly efficient and accurate numerical analysis method for fatigue propagation of surface crack and life prediction[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221291(in Chinese).
[14] CAI J, YUAN S, QING X P, et al. Linearly dispersive signal construction of Lamb waves with measured relative wavenumber curves[J]. Sensors & Actuators A Physical, 2015, 221:41-52.
[15] 蒋黎星, 侯进. 基于集成分类算法的自动图像标注[J]. 自动化学报, 2012, 38(8):1257-1262. JIANG L X, HOU J. Image annotation using the ensemble learning[J]. Acta Automatica Sinica, 2012, 38(8):1257-1262(in Chinese).
[16] LUO C, WANG Z, WANG S, et al. Locating facial landmarks using probabilistic random forest[J]. IEEE Signal Processing Letters, 2015, 22(12):2324-2328.
[17] 魏静明, 李应. 利用抗噪纹理特征的快速鸟鸣声识别[J]. 电子学报, 2015, 43(1):185-190. WEI J M, LI Y. Rapid bird sound recognition using anti-noise texture features[J]. Acta Electronica Sinica, 2015, 43(1):185-190(in Chinese).
[18] 王晓军, 袁平, 毛志忠, 等. 基于随机森林的风洞马赫数预测模型[J]. 航空学报, 2016, 37(5):1494-1505. WANG X J, YUAN P, MAO Z Z, et al. Wind tunnel Mach number prediction model based on random forest[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1494-1505(in Chinese).
[19] GENUER R, POGGI J-M, TULEAU-MALOT C, et al. Random forests for big data[J]. Big Data Research,2017,9:28-46.
[20] PING W, ZHU X. Infer the fact of a case with D-S evidence theory[C]//2009 ETP/IITA World Congress in Applied Computing, Computer Science, and Computer Engineering, 2009:299-302.
[21] 蒋雯, 吴翠翠,贾佳,等.D-S证据理论中的基本概率赋值转换概率方法研究[J].西北工业大学学报,2013,31(2):295-299. JIANG W, WU C C, JIA J, et al. A probabilistic transformation of basic probability assignment (BPA) in D-S evidence theory[J]. Journal of Northwestern Polytechnical University, 2013, 31(2):295-299.
[22] 井立, 杨智春, 张甲奇. 基于信息融合技术的结构损伤检测方法[J]. 振动与冲击, 2018, 37(7):91-95,101. JING L, YANG Z C, ZHANG J Q. Structural damage detection method based on information fusion[J]. Journal of Vibration and Shock, 2018, 37(7):91-95,101(in Chinese).
[23] FAN X, ZUO M J. Fault diagnosis of machines based on D-S evidence theory. Part 1:D-S evidence theory and its improvement[J]. Pattern Recognition Letters,2006,27(5):366-376.