为解决异步不等速率航迹关联问题,提出一种基于分段序列离散度的异步航迹关联算法。定义分段混合航迹序列的离散信息度量,给出不等长航迹序列分段划分规则,通过计算离散度,利用经典分配法进行关联判定,并针对多义性问题设置二次检验环节。与传统算法相比,不需要时间对准,且具有不受噪声分布影响的特点。仿真结果表明,算法在航迹异步、传感器采样率不同等条件下均能以较高正确率稳定关联,并可有效分辨航迹交叉、分叉和合并等复杂情况,具有明显的优势。
To solve the problem of asynchronous unequal rate track association, this paper proposes an asynchronous track-to-track association algorithm based on discrete degree of segmented sequence. A discrete information measurement of segmented and mixed track sequence is defined, and the segmentation rules of track sequence with unequal lengths are presented. The association determination is performed via calculation of the discrete degree and adoption of the classical assignment method. In view of the ambiguity problem, a secondary inspection link is established. Compared with traditional algorithms, this algorithm requires no time alignment and is not affected by noise distribution. The simulation results show that the algorithm can maintain stable association effect with high accuracy under the conditions of asynchronous track and different sensor sampling rates. Furthermore, it can effectively distinguish complex situations such as track crossing, bifurcation and merging, exhibiting clear advantages.
[1] 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:178-265. HE Y, WANG G H, GUAN X. Information fusion theory with applications[M]. Bejing:Publishing House of Electronics Industry, 2010:178-265(in Chinese).
[2] 潘泉,梁彦, 杨峰, 等. 现代目标跟踪与信息融合[M]. 北京:国防工业出版社, 2009:65-77. PAN Q, LIANG Y, YANG F, et al. Modern target tracking and information fusion[M]. Bejing:National Defense Industry Press, 2009:65-77(in Chinese).
[3] ZHU H, LEUNG H, YUEN K V. A joint data association, registration, and fusion approach for distributed tracking[J]. Information Sciences, 2015, 324:186-196.
[4] ZHU H Y, WANG C. Joint track-to-track association and sensor registration at the track level[J]. Digital Signal Processing, 2015, 41:48-59.
[5] 朱洪艳, 韩崇昭, 韩红. 分布式多传感信息融合系统的异步航迹关联方法[J]. 控制理论与应用, 2004, 21(3):453-456. ZHU H Y, HAN C Z, HAN H. Asynchronous track-to-track association method in distributed multi-sensor information fusion system[J]. Control Theory and Applications, 2004, 21(3):453-456(in Chinese).
[6] KAPLAN L, BAR-SHALOM Y, BLAIR W. Assignment costs for multiple sensor track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2):655-677.
[7] 郭蕴华, 袁成. 一种异步航迹关联的变异蚁群算法[J]. 电子学报, 2012, 40(11):2200-2205. GUO Y H, YUAN C. A mutation ant colony algorithm for the asynchronous track correlation[J]. Acta Electronica Sinica, 2012, 40(11):2200-2205(in Chinese).
[8] 徐亚圣, 丁赤飚, 任文娟, 等. 基于直方统计特征的多特征组合航迹关联[J]. 雷达学报, 2019,8(1):25-35. XU Y S, DING C B, REN W J, et al. Multi-feature combination track-to-track association based on histogram statistics feature[J]. Journal of Radars, 2019, 8(1):25-35(in Chinese).
[9] CHENG C, WANG J F. Algorithm for multi-sensor asynchronous track-to-track fusion[C]//6th International Symposium on Neural Networks, 2009.
[10] CHENG C. Asynchronous multisensor track association algorithm and simulation[J]. Procedia Environmental Sciences, 2011, 10(Part B):1109-1114.
[11] SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457.
[12] 刘伟峰, 文成林.基于OSPA距离的航迹关联方法[J]. 航空学报, 2012, 33(6):1083-1092. LIU W F, WEN C L. A track association algorithm based on the OSPA distance[J]. Acta Aeronautica et Astronautica Sincia, 2012, 33(6):1083-1092(in Chinese).
[13] ZHU H, HAN C, HAN H, et al. The algorithm and simulations for the asynchronous track association[C]//Sixth International Conference on Information Fusion. Piscataway:IEEE Press, 2003.
[14] 衣晓, 张怀巍, 曹昕莹, 等. 基于区间灰数的分布式多目标航迹关联算法[J]. 航空学报, 2013, 34(2):352-360. YI X, ZHANG H W, CAO X Y, et al. A track association algorithm for distributed multi-target system based on gray numbers[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):352-360(in Chinese).
[15] 邓聚龙. 灰理论基础[M]. 武汉:华中科技大学出版社, 2002:158-161. DENG J L. Grey system theory[M]. Wuhan:Huazhong University of Science and Technology Press, 2002:158-161(in Chinese).
[16] 衣晓, 韩健越, 张怀巍, 等. 基于区实混合序列相似度的异步不等速率航迹关联算法[J]. 航空学报, 2015, 36(4):1212-1220. YI X, HAN J Y, ZHANG H W, et al. Asynchronous track-to-track association algorithm based on similarity degree of interval-real sequence[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1212-1220(in Chinese).
[17] YANG Y T, LIANG Y, YANG Y, et al. Asynchronous track-to-track association algorithm based on dynamic time warping distance[C]//201534th Chinese Control Conference. Piscotaway:IEEE Press, 2015.
[18] 石教华. 利用时间窗权重进行航迹关联[J]. 火力与指挥控制, 2014(10):78-80. SHI J H. Using the weight in time widow to associate tracks[J]. Fire Control and Command Control, 2014(10):78-80(in Chinese).
[19] 李洋, 张靖. 基于自适应滑动窗均值OSPA航迹关联算法[J]. 电子学报, 2016, 44(2):115-119. LI Y, ZHANG J. Track fusion based on the mean OSPA distance with an adaptive sliding window[J]. Acta Electronica Sinica, 2016, 44(2):115-119(in Chinese).
[20] 王文森. 变异系数-一个衡量离散程度简单而有用的统计指标[J]. 中国统计, 2007(6):43-44. WANG W S. Coefficient of variation-a simple and useful statistical measure of dispersion[J]. China Statistics, 2007(6):43-44(in Chinese).