综述

内埋武器机弹分离相容性研究进展综述

  • 艾邦成 ,
  • 宋威 ,
  • 董垒 ,
  • 蒋增辉
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2020-01-07

  修回日期: 2020-02-24

  网络出版日期: 2020-02-21

Review of aircraft-store separation compatibility of internal weapons

  • AI Bangcheng ,
  • SONG Wei ,
  • DONG Lei ,
  • JIANG Zenghui
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2020-01-07

  Revised date: 2020-02-24

  Online published: 2020-02-21

摘要

为满足新型有人或无人作战飞机高隐身、高速和高机动性等要求,作战飞机普遍采用武器内埋挂载方式。当高速气流流过内埋武器舱的空腔时,将引发边界层分离、舱口附近会存在复杂的剪切流动、舱内会产生极为恶劣的噪声环境等非定常流动现象,这些复杂的非定常流动现象严重影响内埋武器机弹分离相容性(ASSC)。首先,给出内埋武器机弹分离相容性的重要研究意义;接着,重点介绍内埋武器机弹分离相容性的研究进展;最后,论述和总结了国内外采用4种方法(理论分析与建模、风洞试验、数值模拟和飞行试验)研究内埋武器机弹分离相容性及其流动控制方法的进展,指出内埋武器机弹分离相容研究存在的主要问题,并给出几点建议。

本文引用格式

艾邦成 , 宋威 , 董垒 , 蒋增辉 . 内埋武器机弹分离相容性研究进展综述[J]. 航空学报, 2020 , 41(10) : 23809 -023809 . DOI: 10.7527/S1000-6893.2020.23809

Abstract

The internal weapon loading mode is widely used in new type manned or unmanned combat-aircraft to meet the requirements of high stealthy performance, high speed and high mobility. The high-speed airflow, when passing through the cavity of the internal weapon bay, will cause complex unsteady flow phenomena, such as boundary layer separation, complex shear flow near the hatch, and extremely acute noise environment in the cavity, seriously affecting the Aircraft-Store Separation Compatibility (ASSC). This paper mainly introduces the research progress of the separation compatibility for internal weapons after discussing the significance of the research. The progress of four methods (theoretical analysis and modeling, wind tunnel experiments, numerical simulation and flight tests) adopted both at home and abroad to study the separation compatibility and flow control methods for internal weapons is mainly summarized, the main problems in the study of separation compatibility for internal weapons are pointed out and suggestions are provided.

参考文献

[1] 刘瑜. 内埋式弹舱武器发射分离过程研究[D]. 南京:南京航空航天大学,2010. LIU Y. Fluid dynamics analysis on missile launching and separating from weapon bay[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[2] PENG S H. Numerical analysis of FS2020 military aircraft model with weapon bay:FOI MEMO 2489[R]. 2018.
[3] FLORA T J. Free-drop testing and CFD simulation of ice models from a cavity into supersonic flow[R].Wright-Patterson Air Force Base:Air Force Institute of Technology, 2012.
[4] 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳:中国空气动力研究与发展中心,2010:3-4. YANG D G. Studies on aeroacoustic characteristics and noise suppressions for internal weapon bays[D]. Mianyang:China Aerodynamics Research and Development Center,2010:3-4(in Chinese).
[5] SCOTT T B. Flow around an object projected from a cavity into a supersonic free-stream[R]. Wright-Patterson Air Force Base:Air Force Institute of Technology, 2004.
[6] 尉建刚,桑为民,雷熙薇. 内埋式武器舱的流动及气动特性分析[J].飞行力学,2011,29(2):29-32. WEI J G,SANG W M,LEI X W. Analysis of the flow characteristics and aerodynamic problems in internal weapons bay[J].Flight Dynamics,2011,29(2):29-32(in Chinese).
[7] 吴继飞,罗新福,范召林. 内埋式弹舱流场特性及武器分离特性改进措施[J].航空学报,2009,30(10):1840-1845. WU J F,LUO X F,FAN Z L. Flow control method to improve cavity flow and store separation characteristics[J].Acta Aeronautica et Astronautica Sinica,2009,30(10):1840-1845(in Chinese).
[8] 冯金富,杨松涛,刘文杰. 战斗机武器内埋关键技术综述[J].飞航导弹,2010(7):71-74. FENG J F, YANG S T, LIU W J. Review of key technologies for fighter embedded weapons[J].Aerodynamic Missile Journal, 2010(7):71-74(in Chinese).
[9] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J].Progress in Aerospace Sciences, 2011, 47:186-216.
[10] SHIPMAN J,ARUNAJATESAN S,CAVALLO P A,et al. Flow control for enhanced store separation:AIAA-2007-1239[R]. Reston:AIAA, 2007.
[11] 王巍. 导弹内埋气动特性研究与仿真[D]. 哈尔滨:哈尔滨工程大学,2011. WANG W. Aerodynamic studies and simulation of missiles internal[D]. Harbin:Harbin Engineering University,2011(in Chinese)
[12] 唐上钦, 黄长强,翁兴伟. 考虑气动干扰的导弹内埋式发射弹道研究[J].弹箭与制导学报,2013,33(3):138-142. TANG S Q,HUANG C Q,WENG X W. The study on trajectory of missile separating from cavity with aerodynamic Interference considered[J].Journal of Projectiles,Rockets,Missiles and Guidance,2013,33(3):138-142(in Chinese)
[13] 冯必鸣, 聂万胜, 车学科. 初始投放条件对内埋式导弹分离轨迹的影响[J].飞行力学,2009,27(4):62-65. FENG B M,NIE W S,CHE X K. Effect of initial conditions on separation trajectory of the internal missile[J].Flight Dynamics,2009,27(4):62-65(in Chinese).
[14] MALMUTH N, SHALAEV A, FEDOROV A. Combined asymptotic and numerical methods in transonic store interactions[R]. Rockwell Science Co., 2002.
[15] MALMUTH N, SHALAEV V, FEDOROV A. Mathematical fluid dynamics of store and stage separation[R]. Rockwell Science Co., 2005.
[16] MALMUTH N, FEDOROV A, SHALAEV V, et al. PC desktop aerodynamic models for store separation from weapons bay cavities and related vortical processes[R]. 2004.
[17] SHALAEV V,FEDOROV A,MALMUTH N. Analytical modeling of transonic store separation from a cavity:AIAA-2003-0004[R]. Reston:AIAA, 2003.
[18] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社,2010. LI Z F. Special test technique of wind tunnel[M]. Beijing:Aviation Industry Press, 2010(in Chinese).
[19] 李周复. 风洞试验手册[M]. 北京:航空工业出版社,2015. LI Z F. Handbook of wind tunnel test[M]. Beijing:Aviation Industry Press, 2015(in Chinese).
[20] DESLANDES R M,DONAUER S. Scaled-drop-tests WYSIWYG or not:AIAA-2010-0681[R]. Reston:AIAA, 2010.
[21] 蒋增辉,薛飞,鲁伟,等. 非定常多体分离风洞试验技术几个关键问题[J]. 空气动力学学报,2019,37(5):715-721. JIANG Z H, XUE F, LU W, et al. Critical problems of unsteady wind tunnel test technique on multi-bodies separation[J]. Acta Aerodynamica Sinica, 2019, 37(5):715-721(in Chinese).
[22] RAINEY R W. A wind-tunnel investigation of bomb release at a Mach number of 1.62:NACA RM-L53L29[R]. Washington, D.C.:NACA, 1954.
[23] CARTER H S, LEE J B. An investigation of the ejection release of several dynamically scaled bluff internal stores at Mach numbers of 0.8, 1.39, and 1.98:NACA RM-L56H28[R]. Washington, D.C.:NACA, 1956.
[24] LEE J B,CARTER H S. An investigation of ejection releases of submerged and semisubmerged dynamically scaled stores from a simulated bomb bay of a fighter-bomber airplane at supersonic speeds:NACA RM L56I10[R]. Washington, D.C.:NACA,1956.
[25] CARY A C, WESLEY L P. Airframe integration of modern stores (AIMS), delivery order 0031:phase II & III analytical predictions & validation:AFRL-VA-WP-TR-2006-3079[R]. 2006.
[26] BOWER W W, KIBENS V. Separation enhancement and acoustic reduction (SEAR) Phase I:AFRL-VA-WP-TR-2007-3061[R]. 2007.
[27] RUDY A J,MICHAEL J S,JAMES E G. Store separation trajectory deviations due to unsteady weapons bay aerodynamics:AIAA-2008-0188[R]. Reston:AIAA,2008.
[28] MURRAY N E,JANSEN B J,GUI L,et al. Measurements of store separation dynamics:AIAA-2009-0105[R]. Reston:AIAA, 2009.
[29] FLORA T J,REEDER M F. Dynamic store release of ice models from a cavity into Mach 2.9 flow[J]. Journal of Aircraft,2014,51(6):1927-1941.
[30] MERRICK J D. Influence of Mach number and dynamic pressure on cavity tones and freedrop trajectories[R]. Wright-Patterson Air Force Base:Air Force Institute of Technology, 2014.
[31] 鲁伟. 超声速内埋导弹风洞投放试验研究[D]. 北京:中国航天空气动力技术研究院,2018. LU W. Experimental study of the missiles separation from internal weapon bay in supersonic wind tunnel[D]. Beijing:China Academy of Aerospace Aerodynamics, 2018(in Chinese).
[32] 宋威,鲁伟,蒋增辉,等. 内埋武器高速风洞弹射投放模型试验关键技术研究[J]. 力学学报,2018,50(6):1346-1355. SONG W, LU W, JIANG Z H, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6):1346-1355(in Chinese).
[33] 宋威,艾邦成,蒋增辉,等. 内埋武器投放分离相容性的风洞投放试验预测与评估[J]. 航空学报, 2020,41(6):523415. SONG W, AI B C, JIANG Z H, et al. The prediction and assessment of drop separation compatibility of internal weapons by wind-tunnel drop-test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523415(in Chinese).
[34] MICHAEL C P. Experimental measurements of store separation using dry ice models in a subsonic flow[R]. Wright-Patterson Air Force Base:Air Force Institutes of Technology, 2011.
[35] 金时彧. 内埋式弹舱流场及武器投放轨迹研究[D]. 南京:南京航空航天大学,2014. JIN S Y. Research on the flow field of weapon bay and the trajectory of missile separating[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[36] 恽起麟. 风洞实验[M]. 北京:国防工业出版社, 2000:555-568. YUN Q L. Wind tunnel testing[M]. Beijing:Defense Industry Press, 2000:555-568(in Chinese).
[37] 恽起麟. 实验空气动力学[M]. 北京:国防工业出版社, 1991:273-281. YUN Q L. Experimental aerodynamics[M]. Beijing:Defense Industry, 1991:273-281(in Chinese).
[38] SANDAHL C A, FAGET M A. Similitude relations for free-model wind-tunnel studies of store-dropping problems:NACA TN-390793R14088[R]. Washington, D.C.:NACA, 1957.
[39] HILSON W F. Transonic and supersonic ejection release characteristics of six dynamically scaled external-store shapes from an 0.086-scale model of a current fighter airplane:NASA TM X-128[R]. Washington, D.C.:NSSA Langley Research Center, 1959.
[40] STEPHENS T, ADAMS R. Wind tunnel simulation of store jettison with the aid of magnetic artificial gravity:NASA-CR-1955[R]. Washington, D.C.:NASA, 1972.
[41] COVERT E E. Wind-tunnel simulation of store jettison with the aid of an artificial gravity generated by magnetic fields[J]. Journal of Aircraft, 1967, 4(1):48-51.
[42] CARMAN J B. Store separation testing techniques at the Arnold Engineering Development Center. Volume I:An overview[R].1980.
[43] 范洁川. 风洞试验手册[M]. 北京:航空工业出版社, 2002:393-400. FAN J C. Handbook of wind tunnel test[M]. Beijing:Aviation Industry Press, 2002:393-400(in Chinese).
[44] REED J F, CURRY W H. A comparison between transonic wind-tunnel and full-scale store separation characteristics[J]. Journal of Aircraft, 1969, 6(3):281-283.
[45] BLACK R L. High-speed store separation-correlation between wind-tunnel and flight-test data[J]. Journal of Aircraft, 1969, 6(1):42-45.
[46] MARSHALL J C. Analytic evaluation of the limitations of the various scaling laws for free-drop store separation testing[C]//The Fourth JTCG Aircraft/Stores Compatibility Symposium, 1977:197-234.
[47] HOLDEN M S, SMOLINSKI G J, MUNDY E, et al. Experimental studies for hypersonic vehicle design and code validation of unsteady flow characteristics associated with free flight shroud and stage separation and mode switching:AIAA-2008-0642[R]. Reston:AIAA, 2008.
[48] CARMAN J B. Store separation testing techniques at the Arnold Engineering Development Center Volume II:description of captive trajectory store separation testing in the aerodynamic wind tunnel (4T)[R]. 1980.
[49] KEEN K S,MORGRET C H,LANGHAM T F. Trajectory simulations should match flight tests and other lessons learned in 30 years of store-separation analysis:AIAA-2009-0099[R]. Reston:AIAA, 2009.
[50] GARCON F,TARAVEL P H,RAFFIN J C. Recent developments in captive trajectory systems of the ONERA Modane wind-tunnel:AIAA-2001-0579[R]. Reston:AIAA,2001.
[51] DOYLE T V. Current AEDC weapons separation testing and analysis to support flight testing:AIAA-2004-6847[R]. Reston:AIAA,2004.
[52] JI H K,CHANG H S,ILWOO L. T-50/A-50 FSD separation program:AIAA-2006-6000[R]. Reston:AIAA, 2006.
[53] 金鑫, 袁兵, 张利珍, 等. 一种折叠弹翼悬挂物的分离轨迹试验技术[J]. 实验流体力学, 2014, 28(1):80-84. JIN X, YUAN B, ZHANG L Z, et al. A technique of separation trajectory test for stores with folding wing[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1):80-84(in Chinese).
[54] 钱锟,孔维梁. F-35武器系统和载荷分离飞行试验的预先研究[J]. 国际航空,2009(12):64-68. QIAN K, KONG W L. F-35 store separation studies prior to flight test[J]. International Aviation, 2009(12):64-68(in Chinese).
[55] 王勋年,李军,刘晓晖. 空气动力对飞机内藏式导弹分离轨迹影响的低速风洞试验研究[J]. 流体力学实验与测量,1999,13(2):38-43. WANG X N, LI J, LIU X J. A test research in wind tunnel for aerodynamic loads effect on separation trajectories of the internal missile of fighter[J]. Experiments and Measurements in Fluid Mechanics, 1999,13(2):38-43(in Chinese).
[56] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47:186-216.
[57] 杨春信,韩海鹰. 预测座舱盖自由投放运动轨迹方法的研究[J]. 空气动力学学报,2006,24(1):109-114. YANG C X, HAN H Y. Research on the prediction method of the trajectory for a free jettisoned aircraft canopy[J]. Acta Aerodynamic Sinica, 2006,24(1):109-114(in Chinese).
[58] 杨俊,张新慧. 内埋武器重力分离特性分析[J]. 航空科学技术,2017,28(9):10-15. YANG J, ZHANG X H. Analysis on gravity separation characteristics for internal store[J]. Aeronautical Science and Technology, 2017, 28(9):10-15(in Chinese).
[59] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006. YAN C. Method and application of computational fluid mechanics[M]. Beijing:Beihang University Press, 2006(in Chinese).
[60] 冯必鸣,聂万胜,车学科. 超声速条件下内埋式武器分离特性的数值分析[J]. 飞机设计,2009,29(4):1-5. FENG B M, NIE W S, CHE X K. Simulation of the store separation from a cavity at supersonic speed[J]. Aircraft Design, 2009,29(4):1-5(in Chinese).
[61] NELSON C C, CAIN A B. Prediction of store trajectory response to unsteady aerodynamic loads:AIAA-2009-0549[R]. Reston:AIAA, 2009.
[62] DAVIS M B. Store trajectory response to unsteady weapons bay flow-fields:AIAA-2009-0547[R]. Reston:AIAA, 2009.
[63] 廉佳,艾俊强,袁萃. 跨声速开式空腔模型分离特性研究[J]. 飞行力学,2018,36(3):10-14. LIAN J. AI J Q, YUAN C. Study on the separation characteristic of the open cavity model at transonic speeds[J]. Flight Dynamics, 2018, 36(3):10-14(in Chinese).
[64] 冯必鸣,聂万胜,车学科,等. 安装角度对内埋式导弹分离特性的影响[J]. 空气动力学学报,2010,28(6):672-675. FENG B M, NIE W S, CHE X K, et al. Effect of fixing angle to separation characteristics of internal store[J]. Acta Aerodynamic Sinica, 2010, 28(6):672-675(in Chinese).
[65] 朱收涛,曹林平,封普文,等. 平飞时内埋导弹弹射分离仿真与研究[J]. 电光与控制,2012,19(9):67-71. ZHU S T, CAO L P, FENG P W, et al. Simulation of missile separation from internal weapon bay[J]. Electronics Optics and Control, 2012, 19(9):67-71(in Chinese).
[66] DUK H K,JAE H C,OH J K. Detached eddy simulation of weapons bay flows and store separation[J]. Computers and Fluids, 2015, 121:1-10.
[67] 李菁,陈帮,胡俊香. 三维内埋式航弹与载机分离非定常流场数值模拟[J]. 兵器装备工程学报, 2019, 40(4):119-113. LI J, CHEN B, HU J X. CFD numerical simulation of the interference flow fluid of three-dimensional airplane and aviation bomb[J]. Journal of Ordnance Equipment Engineering, 2019, 40(4):119-113(in Chinese).
[68] ATWOOD C A. Computation of a controlled store separation from a cavity[J]. Journal of Aircraft,1995,32(4):846-852.
[69] KRAFT N D, LOFTHOUSE M A. Non-repeatability of store separation trajectories from internal weapon bays due to unsteady cavity flow effects-lessons learned from a 2D investigation:AIAA-2011-1238[R]. Reston:AIAA, 2011.
[70] FINNEY L P. Investigation of cavity flow effects on store separation trajectories[R]. Annapolis:Naval Academy, 2010.
[71] 张培红,王明,邓有奇,等. 武器分离及舱门开启过程数值模拟研究[J]. 空气动力学学报,2013,31(3):277-282. ZHANG P H, WANG M, DENG Y Q, et al. Numerical simulation of store separation and door operation[J]. Acta Aerodynamica Sinica, 2013, 31(3):277-282(in Chinese).
[72] 杨磊. 基于非结构嵌套网格的六自由度武器投放过程数值研究[D]. 南京:南京航空航天大学,2014. YANG L. Numerical simulation of weapon separation based on unstructured overset grid and CFD/6DOF method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[73] 李骞, 杨俊, 谢云恺, 等. 超声速内埋武器不同分离方式分析[J]. 航空计算技术, 2014,44(5):69-72. LI Q, YANG J, XIE Y K. Simulation of different separation models of internal weapon at supersonic speed[J]. Aeronautical Computing Technique, 2014, 44(5):69-72(in Chinese).
[74] 刘帅. 空腔流动特性及流动控制[D]. 北京:中国航天空气动力技术研究院,2013. LIU S. The characteristic of the cavity flow and cavity flow control[D]. Beijing:China Academy of Aerospace Aerodynamics, 2013(in Chinese).
[75] 任光远. 内埋弹舱舱门开启和武器分离过程数值模拟研究[D]. 北京:北京交通大学,2015. REN G Y. Numerical simulation of doors operation and missile separation from buried weapon bay[D]. Beijing:Beijing Jiaotong University, 2015(in Chinese).
[76] 杨俊,李骞,谢云恺,等. 超声速内埋武器分离数值研究[J]. 弹箭与制导学报,2015,35(4):171-174. YANG J, LI Q, XIE Y K, et al. Numerical studies on store separation from a weapon bay at supersonic speed[J]. Journal of Projectiles, Rocket, Missile and Guidance, 2015, 35(4):171-174(in Chinese).
[77] 王晓鹏,李响,左英桃,等. 超音速空腔流动中选成体气动特性数值研究[J]. 弹箭与制导学报,2016,36(5):97-100. WANG X P, LI X, ZUO Y T, et al. Numerical investigation on aerodynamic characteristics of a generic store in supersonic cavity flow[J]. Journal of Projectiles, Rockets, Missile and Guidance, 2016, 36(5):97-100(in Chinese).
[78] 张群峰,闫盼盼,黎军. 内埋式弹舱与弹体相互影响的精细模拟[J]. 兵工学报,2016,37(12):2366-2376. ZHANG Q F, YAN P P, LI J. Elaborate simulation of interaction effect between internal weapon bay and missile[J]. Acta Armamentarii, 2016, 37(12):2366-2376(in Chinese).
[79] 郭少杰,王斌,周培培,等. 隐身无人机内埋武器分离安全性数值研究[J]. 机械科学与技术,2017,36(增刊):1-7. GUO S J, WANG B, ZHOU P P, et al. Numerical analysis for internal weapon separation performance of a stealth UAV[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(Supplement):1-7(in Chinese).
[80] 闫盼盼,张群峰,金明,等. 内埋武器发射参数对下落轨迹的影响[J]. 工程力学,2018,35(1):246-256. YAN P P, ZHANG Q F, JIN M, et al. Effects of launching parameters on the separation trajectory of internal weapons[J]. Engineering Mechanics, 2018, 35(1):246-256(in Chinese).
[81] 钱锟. F-22A武器和外挂载荷分离飞行试验[J]. 国际航空,2008(3):24-27. QIAN K. F22A's weapon system and store separation flight test[J]. International Aviation, 2008(3):24-27(in Chinese).
[82] KEEN K S, MORGRET C H, ARTERBURY R L. An analytic investigation of accuracy requirements for onboard instrumentation and film data for dynamically scaled wind tunnel drop models:AEDC-TR-96-7[R]. 1997.
[83] 尹承顺,雷武涛. 飞机外挂物投放风洞与飞行相关性研究思路探讨[J]. 航空科学技术,2015,26(3):14-18. YIN C S,LEI W T. Investigation of wind tunnel and flight correlation research ideas on external-store drop[J]. Aeronautical Science & Technology, 2015, 26(3):14-18(in Chinese).
[84] 陈坚强,张益荣,张毅锋,等. 高超声速气动力数据天地相关性研究综述[J]. 空气动力学学报, 2014,32(5):587-599. CHEN J Q, ZHANG Y R, ZHANG Y F, et al. Review of correlation analysis of aerodynamic data between flight and ground prediction for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(5):587-599(in Chinese).
[85] DAVIDS S, CENKO A. Grid based approach to store separation:AIAA-2001-2418[R]. Reston:AIAA, 2001.
[86] ROBERT L B. High-speed store separation correlation between wind-tunnel and flight-test data[J]. Journal of Aircraft, 1969,6(1):42-45.
[87] SRIDHAR M R. Comparison of predicted and flight test trajectories of stores jettisoned from aircraft[J]. Journal of Aircraft, 1978, 15(10):641-642.
[88] BOWER W W,KIBENS V,CARY A W. High-frequency excitation active flow control for high-speed weapon release (HIFEX):AIAA-2004-2513[R]. Reston:AIAA, 2004.
[89] WILCOX F J. Passive venting system for modifying cavity flow-fields at supersonic speeds[J]. AIAA Journal, 1988, 26(3):374-376.
[90] WILCOX F J. Experimental investigation of porous-floor effects on cavity flow fields at supersonic speeds:NASA TP-3032[R]. Washington, D.C.:NASA, 1990.
[91] STALLINGS R L, PLENTOVICH E B, TRACY M B. Effect of passive venting on static pressure distributions in cavities at subsonic and transonic speeds:NASA T M 4549[R]. Washington, D.C.:NASA, 1994.
[92] ZHANG X, RONA A. An observation of pressure wave around a shallow cavity[J]. Journal of Sound and Vibration, 1998, 214(4):771-778.
[93] WILLIAMS D R, FABRICS D. Experimental on controlling multiple acoustic modes in cavities:AIAA-2000-1903[R]. Reston:AIAA, 2000.
[94] TABORDA N, BRAY D, KNOWLES K. Passive control of cavity resonances in tandem configurations:AIAA-2001-2770[R]. Reston:AIAA, 2001.
[95] ZHANG J, MORISHITA E, OKUNUKI T, et al. Experimental and computational investigation of supersonic cavity flows:AIAA-2001-0001[R]. Reston:AIAA, 2001.
[96] JONATHAN G D, LAWRENCE U. Suppression of fluctuating surface pressures in a supersonic cavity flow:AIAA-2010-4974[R]. Reston:AIAA, 2010.
[97] UKEILEY L S, PONTON M K, SEINER J M, et al. Suppression of pressure loads in cavity flow:AIAA-2002-0661[R]. Reston:AIAA, 2002.
[98] SHEKHAR S,PRAVEEN P,GANESH R. Cavity tone suppression using a rod in cross flow investigation of shear layer stability mechanism:AIAA-2009-0700[R]. Reston:AIAA, 2009.
[99] ROSSITER J, KURN A. Wind tunnel measurements of the unsteady pressures in and behind a bomb bay[R]. Royal Aircraft Establishment, 1963.
[100] NIGHTINGALE D, ROSS J, FOSTER G. Cavity unsteady pressure measurements-examples from wind-tunnel tests[R]. Aerodynamics and Aeromechanics Systems Group, 2005.
[101] CATTAFESTA III L, SONG Q, WILLIAMS D, et al. Active control of flow induced cavity oscillations[J]. Progress in Aerospace Sciences, 2008,44:479-502.
[102] GROVE J E,BIRKBECK R M,KREHER J M. Acoustic and separation characteristics with bay leading edge blowing:AIAA-2000-1904[R]. Reston:AIAA, 2000.
[103] BUENO P C, CLEMENS N T, DOLLING D S. The effects of upstream mass injection on a Mach 2 cavity flow:AIAA-2002-0663[R]. Reston:AIAA, 2002.
[104] ABRAHAM J M, AHMAD D V. Upstream mass-injection effects on cavity flow oscillations:AIAA-2003-0224[R]. Reston:AIAA, 2003.
[105] LEONARD S. High speed application of active flow control for cavity acoustics:AIAA-2000-1926[R]. Reston:AIAA, 2000.
[106] LAZAR E,ELLIOTT G. Control of the shear layer above a supersonic cavity using energy deposition[J]. AIAA Journal,2008,46(12):2987-2997.
[107] LEONARD S. Closed loop active control for cavity acoustics:AIAA-1999-1902[R]. Reston:AIAA, 1999.
[108] ZHANG N, ALVI F S, ALKISLAR M B, et al. Aeroacoustic properties of supersonic cavity flow and their control:AIAA-2003-3101[R]. Reston:AIAA, 2003.
[109] 杨党国, 吴继飞,罗新福,等. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报,2011,32(6):1007-1014. YANG D G, WU J F, LUO X F, et al. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(6):1007-1014(in Chinese).
[110] ROWLEY C, WILLIAMS D. Dynamics and control of high Reynolds number flow over open cavities[J]. Annual Review of Fluid Mechanics, 2006, 38:251-276.
[111] BOWER W B, KIBENS V, CARY W, et al. High-frequency excitation active flow control for high-speed weapon release:AIAA-2004-2513[R]. Reston:AIAA, 2004.
[112] 冯强, 崔晓春. 飞翼布局飞机武器舱综合流动控制技术研究[J]. 航空学报,2012,33(5):781-787. FENG Q, CUI X C. Study on integrated flow control for weapons bay of flying wing configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2012,33(5):781-787(in Chinese).
[113] 管德会, 蔡为民. 绕流板对内埋导弹偏航姿态角的影响[J]. 航空学报,2014,35(4):942-947. GUAN D H, CAI W M. Spoiler's effect on the yawing attitude angle of the missile in the bay[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(4):942-947(in Chinese).
[114] 郭亮, 王纯,叶斌,等. 采用流动控制的超声速内埋物投放特性研究[J]. 航空学报,2015,36(6):1752-1761. GUO L, WANG C, YE B, et al. Investigation on characteristics of store release from internal bay in supersonic flow under flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1752-1761(in Chinese).
[115] ZHU S Q, CHEN Z H, ZHANG H, et al. Investigations on the influence of control devices to the separation characteristics of a missile from the internal weapons bay[J]. Journal of Mechanical Science and Technology, 2018, 32(5):2047-2057.
文章导航

/