材料工程与机械制造

高应变率条件下38CrMoAl钢的动态力学行为及失效模型

  • 陈跃良 ,
  • 张柱柱 ,
  • 卞贵学 ,
  • 张勇 ,
  • 黄海亮
展开
  • 1. 海军航空大学青岛校区, 青岛 266041;
    2. 海军航空大学航空保障专业兵训练基地, 青岛 266041

收稿日期: 2019-12-04

  修回日期: 2020-02-04

  网络出版日期: 2020-02-21

基金资助

国家自然科学基金(51375490);中国博士后科学基金(2019M653929)

Dynamic mechanical behavior and failure model of 38CrMoAl steel under high strain rate

  • CHEN Yueliang ,
  • ZHANG Zhuzhu ,
  • BIAN Guixue ,
  • ZHANG Yong ,
  • HUANG Hailiang
Expand
  • 1. Naval Aviation University Qingdao Campus, Qingdao 266041, China;
    2. Naval Aviation University Aviation Support Professional Training Base, Qingdao 266041, China

Received date: 2019-12-04

  Revised date: 2020-02-04

  Online published: 2020-02-21

Supported by

National Natural Science Foundation of China (51375490); China Postdoctoral Science Foundation (2019M653929)

摘要

38CrMoAl钢是飞机某频繁经受冲击载荷结构的主要材料,为了获得该钢在冲击载荷下的力学行为和失效参数,本文对38CrMoAl钢开展了准静态试验、应变率从650 s-1至5 500 s-1的动态力学试验以及应力三轴度试验,对材料的金相组织和断口形貌进行了微观观察分析,最后基于试验结果确定了材料的修正强度模型和失效模型参数。试验结果表明,38CrMoAl钢具有较强的应变率敏感性,材料屈服强度随着应变率的增加具有正应变率强化效应,应变率在10-3~5 500 s-1的范围变化时,屈服应力从450 MPa上升到了1 085 MPa,应变率为5 500 s-1时材料的屈服应力达到了准静态条件下的2.41倍。对材料组织的微观观察分析发现材料主要由呈现颗粒状的回火索氏体组成,材料在高应变速率加载下其塑性发生了下降,断口由韧窝型塑性断口向局部解理断面发生转变,韧窝尺寸也随着应变率的升高而变小。对Johnson-Cook(J-C)强度模型中的应变率强化项进行了修正,使修正后的本构模型可以更有效地描述38CrMoAl钢的动态力学行为,最后结合数值模拟方法确定了材料的J-C失效准则参数。

本文引用格式

陈跃良 , 张柱柱 , 卞贵学 , 张勇 , 黄海亮 . 高应变率条件下38CrMoAl钢的动态力学行为及失效模型[J]. 航空学报, 2020 , 41(10) : 423709 -423709 . DOI: 10.7527/S1000-6893.2020.23709

Abstract

38CrMoAl steel is the main material of an aircraft structure frequently subjected to impact loads. To obtain the mechanical behavior and failure parameters of the steel under impact loads, a quasi-static test, a dynamic mechanical test of strain rates from 650 s-1 to 5 500 s-1 and a stress triaxiality test were conducted on 38CrMoAl steel. The microstructure and fracture morphology of the material were microscopically observed and analyzed. Finally, the modified strength model and failure model parameters of the material were determined based on the test results. The test results show that 38CrMoAl steel has strong strain rate sensitivity. The yield strength of the material has a positive strain rate strengthening effect as the strain rate increases. When the strain rate changes from 10-3 s-1 to 5 500 s-1, the yield stress rises from 450 MPa to 1 085 MPa. When the strain rate is 5 500 s-1, the yield stress of the material reaches 2.41 times that under quasi-static conditions. The microscopic observation and analysis of the material structure disclosed that the material is mainly composed of grained tempered sorbite, the plasticity of the material decreases under high strain rate loading, and the fracture is transformed from a plastic dimple-type fracture to a local cleavage one. The litter size also decreases with the increasing strain rate. The strain rate strengthening term in the Johnson-Cook (J-C) strength model was modified to enable the modified constitutive model to more effectively describe the dynamic mechanical behavior of 38CrMoAl steel. Finally the J-C failure criterion parameters of the material were determined.

参考文献

[1] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性[J].航空学报, 2019, 40(9):222907. FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(9):222907(in Chinese).
[2] 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J].航空学报, 2019, 40(1):522484. WANG C X, GAO H M, GONG X, et al. Impact responses of aeronautic riveting structures[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522484(in Chinese).
[3] 冉春, 陈鹏万, 李玲, 等. 中高应变率条件下TC18钛合金动态力学行为的实验研究[J].兵工学报, 2017, 38(9):1723-1728. RAN C, CHEN P W, LI L, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates[J].Acta Armamentarii, 2017, 38(9):1723-1728(in Chinese).
[4] 陈尧, 宋磊, 张宸恺, 等. 38CrMoAl液压柱塞无白亮层低温离子渗氮工艺研究[J].机械工程学报, 2017, 53(22):81-86. CHEN Y, SONG L, ZHANG C K, et al. Lower temperature plasma nitriding without white layer for 38CrMoAl hydraulic plunger[J].Journal of Mechanical Engineering, 2017, 53(22):81-86(in Chinese).
[5] NIU L, QIU S T, ZHAO J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet[J].Journal of Iron and Steel Research, 2018, 30(5):359-367.
[6] 宋宗尧. 65Mn及38CrMoAlA钢的高温组织与力学性能的适应性研究[D]. 沈阳:东北大学, 2010. SONG Z Y. A study on the adaptability of 65Mn and 38CrMoAlA's mechanical property and high temperature structure[D]. Shenyang:Northeastern University, 2010(in Chinese).
[7] LIU J, HAO X, LI S, et al. Effect of pre-corrosion on fatigue life of high strength steel 38CrMoAl[J].Journal of Wuhan University of Technology-Materials Science Edtion, 2011, 26(4):648-653.
[8] CHEN Y, SONG L, ZHANG C, et al. Plasma nitriding without formation of compound layer for 38CrMoAl hydraulic plunger[J].Vacuum, 2017, 143:98-101.
[9] TONG W P, HAN Z, WANG L M, et al. Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J].Surface and Coatings Technology, 2008, 202(20):4957-4963.
[10] HUA X Z, ZHOU L, CUI X, et al. The effect of ammonia water on the microstructure and performance of plasma electrolytic saturation nitriding layer of 38CrMoAl steel[J].Physics Procedia, 2013, 50:304-314.
[11] GAN M, PU W, SHEN L, et al. Mechanical properties of nitrogen implanted 38CrMoAl nitrided steel[J].Surface and Coatings Technology, 1994, 66(1-3):288-290.
[12] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系[J].爆炸与冲击, 2018, 38(4):804-810. GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel[J].Explosion and Shock Waves, 2018, 38(4):804-810(in Chinese).
[13] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定[J].振动与冲击, 2014, 33(9):153-158. LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel[J].Journal of Vibration and Shock, 2014, 33(9):153-158(in Chinese).
[14] MCWILLIAMS B, PRAMANIK B, KUDZAL A, et al. High strain rate compressive deformation behavior of an additively manufactured stainless steel[J].Additive Manufacturing, 2018, 24:432-439.
[15] ZHOU P, LIANG Z Y, HUANG M X. Microstructural evolution of a nanotwinned steel under extremely high-strain-rate deformation[J].Acta Materialia, 2018, 149:407-415.
[16] 武海军, 姚伟, 黄风雷, 等. 超高强度钢30CrMnSiNi2A动态力学性能实验研究[J].北京理工大学学报, 2010, 30(3):258-262. WU H J, YAO W, HUANG F L, et al. Experimental study on dynamic mechanical properties of ultrahigh strength 30CrMnSiNi2A steel[J].Transactions of Beijing Institute of Technology, 2010, 30(3):258-262(in Chinese).
[17] XIE J L, ZHNAG Q M, WANG X Y, et al. Determination of gruneisen EOS of MSN alloy steel under high pressure[J].Journal of Beijing Institute of Technology (English Edition), 2003, 12(2):154-157.
[18] 李硕. 强冲击载荷下35CrMnSi动态力学行为与断裂机理研究[D]. 太原:中北大学, 2015. LI S. Study on dynamic mechanical behavior and fracture mechanism of 35CrMnSi under high impact load[D]. Taiyuan:North University of China, 2015(in Chinese).
[19] 吴志强, 唐正友, 李华英, 等. 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J].金属学报, 2012, 48(5):593-600. WU Z Q, TANG Z Y, LI H Y, et al. Effect of strain rate on microstructure evolution and mechanical behavior of a low C high Mn TRIP/TWIP steels[J].Acta Metallurgica Sinica, 2012, 48(5):593-600(in Chinese).
[20] WU C C, WANG S H, CHEN C Y, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel[J].Scripta Materialia, 2007, 56(8):717-720.
[21] ZHANG Q D, CAO Q, ZHANG X F. A modified Johnson-Cook model for advanced high-strength steels over a wide range of temperatures[J].Journal of Materials Engineering and Performance, 2014, 23(12):4336-4341.
[22] KEITA O, DUBOS P A, CHOTTIN J, et al. Numerical prediction model of temperature effect on DP1000 steel damage during warm formability[J].Key Engineering Materials, 2015, 651-653:77-82.
[23] XING W, XIONG L, TANG Q. Identification of constitutive equation parameters of 300M steel based on improved temperature model[J].China Mechanical Engineering, 2015, 26(17):2297-2301.
[24] 郭鹏程, 曹淑芬, 叶拓, 等. 高速冲击载荷下AM80镁合金的力学本构及仿真模拟[J].中国有色金属学报, 2017, 27(6):1075-1082. GUO P C, CAO S F, YE T, et al. Mechanical constitutive equation and simulation of AM80 magnesium alloy under high speed impact load[J].The Chinese Journal of Nonferrous Metals, 2017, 27(6):1075-1082(in Chinese).
[25] 陈俊岭, 舒文雅, 李金威. Q235钢材在不同应变率下力学性能的试验研究[J].同济大学学报:自然科学版, 2016, 44(7):1071-1075. CHEN J L, SHU W Y, LI J W. Experimental study on dynamic mechanical property of Q235 steel at different strain rates[J].Journal of Tongji University (Natural Science), 2016, 44(7):1071-1075(in Chinese).
[26] KHAN A S, BAIG M. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy[J].International Journal of Plasticity, 2011, 27(4):522-538.
[27] KIM J H, KIM D, HAN H N, et al. Strain rate dependent tensile behavior of advanced high strength steels:Experiment and constitutive modeling[J].Materials Science and Engineering:A, 2013, 559:222.
[28] BUCHELY M F, MARANON A. An engineering model for the penetration of a rigid-rod into a Cowper-Symonds low-strength material[J].Acta Mechanica, 2015, 226(9):2999-3010.
[29] HAN L L, JING L, ZHAO L M. Finite element simulation of the flat-induced wheel-rail impact based on the Cowper-Symonds empirical model[J].Chinese Journal of High Pressure Physics, 2017, 31(6):785-793.
[30] 谢凡, 张涛, 陈继恩, 等. 应力三轴度的有限元计算修正[J].爆炸与冲击, 2012(1):8-14. XIE F, ZHANG T, CHEN J E, et al. Updating of the stress triaxiality by finite element analysis[J].Explosion and Shock Waves, 2012(1):8-14(in Chinese).
文章导航

/