流体力学与飞行力学

超临界正癸烷同轴剪切喷注热声振荡数值模拟

  • 李家齐 ,
  • 阮波 ,
  • 高效伟
展开
  • 大连理工大学 航空宇航学院, 大连 116024

收稿日期: 2019-12-04

  修回日期: 2019-12-23

  网络出版日期: 2020-02-13

基金资助

国家自然科学基金(11672061);中央高校基本科研业务费专项基金(DUT19LK30)

Numerical simulation of thermoacoustic oscillations during n-decane shear-coaxial injection processes at supercritical pressure

  • LI Jiaqi ,
  • RUAN Bo ,
  • GAO Xiaowei
Expand
  • School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China

Received date: 2019-12-04

  Revised date: 2019-12-23

  Online published: 2020-02-13

Supported by

National Natural Science Foundation of China (11672061); the Fundamental Research Funds for the Central Universities (DUT19LK30)

摘要

以液体火箭发动机同轴剪切喷嘴燃烧室作为研究对象,对超临界压力下低温正癸烷向高温正癸烷喷注过程中,由于高温正癸烷被快速冷却导致密度剧烈变化进而引发的热声振荡现象进行数值模拟。研究了出口压力、高温正癸烷流动速度与温度、低温正癸烷喷注速度与温度对热声波振幅与频率的影响。结果表明:当高温正癸烷被快速冷却时,其自身体积快速收缩,同时由于附近高温正癸烷的惯性导致压力先增大后减小,快速交替变化,从而产生热声波在高温正癸烷中传播。热声波振幅与频率的大小主要由高温正癸烷在不同压力与温度下的热物性决定。热声波的频率随着高温正癸烷声速增大而增大;热声波的振幅由高温正癸烷的相对压力系数与温度变化率共同决定。

本文引用格式

李家齐 , 阮波 , 高效伟 . 超临界正癸烷同轴剪切喷注热声振荡数值模拟[J]. 航空学报, 2020 , 41(11) : 123708 -123708 . DOI: 10.7527/S1000-6893.2020.23708

Abstract

The thermoacoustic oscillations induced by the dramatic change of fluid density resulted from rapid temperature variations during the shear-coaxial injection process at supercritical pressure is numerically simulated. The effects of outlet pressure, high-temperature n-decane flow rate and inlet temperature, low-temperature n-decane injection rate and inlet temperature on the oscillation amplitude and frequency are investigated. The results show that the high-temperature n-decane shrinks drastically in volume when cooled rapidly, and the pressure increases first and then decreases rapidly due to the inertial of surrounding high-temperature n-decane, thus generating thermoacoustic oscillations. The amplitude and frequency of thermoacoustic waves are mainly determined by the thermophysical properties of high-temperature n-decane at different pressures and temperatures: the frequency of thermoacoustic waves increases with the increase of the sound speed of high-temperature n-decane; the amplitude of thermoacoustic waves is determined by the relative pressure coefficient of the high-temperature n-decane and the rate of temperature change.

参考文献

[1] SOBEL D R, SPADACCINI L J. Hydrocarbon fuel cooling technologies for advanced propulsion[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(2):344-351.
[2] EDWARDS T. Liquid fuels and propellants for aerospace propulsion:1993-2003[J]. Journal of Propulsion & Power, 2003, 19(6):1089-1107.
[3] GAO W, LIN Y Z, HUI X, et al. Injection characteristics of near critical and supercritical kerosene into quiescent atmospheric environment[J]. Fuel, 2019, 235:775-781.
[4] STAR A M, EDWARDS J R, LIN K C, et al. Numerical simulation of injection of supercritical ethylene into nitrogen[J]. Journal of Propulsion and Power,2006, 22(4):809-819.
[5] 刘泽宇,张弛,韩啸,等.分层比对分开分层旋流预混火焰结构的影响[J].航空学报,2018,39(3):121692. LIU Z Y, ZHANG C, HAN X, et al. Effects of stratification ratio on structure of separated stratified premixed swirl flame[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(3):121692(in Chinese).
[6] 汪秋笑,黄东欣,孟华.甲烷-液氧超临界压力非预混湍流燃烧的数值模拟[J].航空学报,2016,37(7):2132-2143. WANG Q X, HUANG D X, MENG H. Numerical simulation of CH4-LO<i>x non-premixed turbulent combustion at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(7):2132-2143(in Chinese).
[7] 康忠涛,李向东,毛雄兵,等.液体火箭发动机中气液同轴直流式喷嘴研究综述[J]. 航空学报, 2018, 39(9):022221. KANG Z T, LI X D, MAO X B, et al. Review on gas and liquid shear coaxial injector in liquid rocket engine[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):022221(in Chinese).
[8] KUMAKAWA A, SASAKI M, TAKAHASHI M, et al. Experimental study on liquid methane cooled thrust chambers[C]//Proceedings of 18th International Symposium on Space Technology and Science, 1992:41-50.
[9] HINES W S, WOLF H. Pressure oscillations associated with heat transfer to hydrocarbon fluids at supercritical pressures and temperatures[J]. ARS Journal,1962, 32(3):361-366.
[10] LINNE D, MEYER M, EDWARDS T, et al. Evaluation of heat transfer and thermal stability of supercritical JP-7 fuel:AIAA-1997-3041[R]. Reston:AIAA, 1997.
[11] HITCH B, KARPUK M. Experimental investigation of heat transfer and flow instabilities in supercritical fuels:AIAA-1997-3043[R]. Reston:AIAA, 1997.
[12] HITCH B, KARPUK M. Enhancement of heat transfer and elimination of flow oscillations in supercritical fuels:AIAA-1998-3759[R]. Reston:AIAA, 1998.
[13] LINNE D, MEYER M, BRAUN D, et al. Investigation of instabilities and heat transfer phenomena in supercritical fuels at high heat flux and temperatures:AIAA-2000-3128[R]. Reston:AIAA, 2000.
[14] HUNT S, HEISTER S. Thermoacoustic oscillations in multipath heated fuel circuits[J]. Journal of Heat Transfer,2017,139(9):091801.
[15] HUNT S, HEISTER S. Thermoacoustic oscillations in supercritical fuel flows:AIAA-2014-3973[R]. Reston:AIAA, 2014.
[16] HUNT S. Thermoacoustic oscillations of Jet-A fuel in parallel heated flow paths:IMECE2015-50692[R]. New York:ASME, 2015.
[17] HAO H, SCALO C, SEN M, et al. Thermoacoustics of solids:A pathway to solid state engines and refrigerators[J]. Journal of Applied Physics,2018,123(2):024903.
[18] HAO H, SCALO C, SEMPERLOTTI F. Traveling and standing thermoacoustic waves in solid media[J]. Journal of Sound and Vibration,2019,449:30-42.
[19] PAN H, BI Q, LIU Z, et al. Experimental investigation on thermo-acoustic instability and heat transfer of supercritical endothermic hydrocarbon fuel in a mini tube[J]. Experimental Thermal and Fluid Science,2018,97:109-118.
[20] WANG H, ZHOU J, PAN Y, et al. Experimental investigation on the onset of thermoacoustic instability of supercritical hydrocarbon fuel flowing in a small-scale channel[J]. Acta Astronautica,2015,117:296-304.
[21] ZHOU W, YU B, QIN J, at el. Mechanism and influencing factors analysis of flowing instability of supercritical endothermic hydrocarbon fuel within a small-scale channel[J]. Applied Thermal Engineering, 2014, 71(1):34-42.
[22] WANG H, WANG H Q, NIE W S, et al. Investigation on the mechanism of thermoacoustic instability of n-decane at subcritical pressure[J]. AIAA Journal, 2018, 56(7):2635-2641.
[23] YAN J, ZHU Y, ZHAO R, at el. Experimental investigation of the flow and heat transfer instability in n-decane at supercritical pressures in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2018, 120:987-996.
[24] HUANG S, RUAN B, MENG H, et al. Boundary effects on flow oscillations in transient heat transfer of n-decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer,2018,123:821-825.
[25] RUAN B, HUANG S, MENG H, et al. Flow dynamics in transient heat transfer of n-decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer,2017,115:206-215.
[26] RUAN B, HUANG S, MENG H, et al. Transient responses of turbulent heat transfer of cryogenic methane at supercritical pressures[J]. International Journal of Heat and Mass Transfer,2017,109:326-335.
[27] 王彦红,李素芬,东明,等.超临界压力航空煤油热声振荡与传热恶化实验研究[J].推进技术,2016,37(3):401-410. WANG Y H, LI S F, DONG M, et al. Experimental studies on thermoacoustic oscillation and heat transfer deterioration of aviation kerosene under supercritical pressure[J]. Journal of Propulsion Technology, 2016,37(3):401-410(in Chinese).
[28] AKTAS M K, FAROUK B, NARAYAN P, et al. A numerical study of the generation and propagation of thermoacoustic waves in water[J]. Physics of Fluids,2004,16(10):3786-3794.
[29] 阮波, 孟华. 碳氢燃料裂解吸热反应及超临界传热现象数值模型的构建与验证[J]. 航空学报, 2011, 32(12):2220-2226. RUAN B, MENG H. Numerical model development and validation for hydrocarbon fuel supercritical heat transfer with endothermic pyrolysis[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2220-2226(in Chinese).
[30] HASAN N, FAROUK B. Fast heating induced thermoacoustic waves in supercritical fluids:Experimental and numerical studies[J]. Journal of Heat Transfer,2013,135(8):081701.
[31] MIURA Y, YOSHIHARA S, OHNISHI M, et al. High-speed observation of the piston effect near the gas-liquid critical point[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74:010101.
[32] KIRSHNER J M, KATZ S. Design theory of fluidic components[M]. New York:Academic Press, 1975.
文章导航

/