电子电气工程与控制

电分相电弧对全向信标电磁辐射特性的分析

  • 梁飞 ,
  • 効迎春 ,
  • 鲁楠 ,
  • 朱峰
展开
  • 1. 中国民用航空总局第二研究所空管实验室, 成都 610041;
    2. 西南交通大学 电气工程学院, 成都 611756

收稿日期: 2019-12-04

  修回日期: 2019-12-23

  网络出版日期: 2020-02-06

基金资助

国家重点研发计划(2018YFC0809500)

Characteristics analysis of electromagnetic emission on VOR caused by neutral section arcs

  • LIANG Fei ,
  • XIAO Yingchun ,
  • LU Nan ,
  • ZHU Feng
Expand
  • 1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China;
    2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

Received date: 2019-12-04

  Revised date: 2019-12-23

  Online published: 2020-02-06

Supported by

National Key R&D Program of China (2018YFC0809500)

摘要

为了分析电气化铁路高速列车电分相电弧对机场全向信标(VOR)的影响,研究其电磁发射特性。利用电磁干扰接收机与频谱仪,分别以点频和扫频方式,对电气化铁路电分相点和普通点进行了大量辐射测试。分析测试数据的异方差性,改进回归分析方法,拟合出电弧在全向信标频段的幅频特性曲线,分析弓网电弧电磁辐射对机场全向信标的影响。结果表明:电分相电磁辐射是随机的,在电分相处比普通点大;现代电气化铁路高速列车经过电分相的测试数据异方差性比较明显,普通的最小二乘估计方法不适用;当电气化铁路电分相点与飞机距离小于4.944 km时,可能会对VOR信号产生影响。

本文引用格式

梁飞 , 効迎春 , 鲁楠 , 朱峰 . 电分相电弧对全向信标电磁辐射特性的分析[J]. 航空学报, 2020 , 41(8) : 323705 -323705 . DOI: 10.7527/S1000-6893.2020.23705

Abstract

To analyze the influence of electrified railway high-speed train arcs on the airport Very high frequency Omnidirectional Range (VOR), the electromagnetic emission characteristics of the arcs are studied. The electromagnetic interference receiver and the spectrum analyzer are used to measure the typical locations of electrified railways (neutral section points and common points) by means of point frequency and sweep frequency respectively. The heteroscedasticity of the test data is analyzed and the regression analysis method improved. The amplitude-frequency characteristic curve of the arcs in the omnidirectional beacon frequency band is fitted, with the influence of arc electromagnetic radiation on the omnidirectional beacon of the airport analyzed. The results show that: the electromagnetic radiation of the arc has a certain random characteristic; the maximum field strength is at the neutral section point, larger than that at the normal points; in modern electrified railways, the heteroscedasticity of the test data of the neutral section is more distinct, and the ordinary least squares estimation method is not applicable; when the electrified railway electrical phase separation point is within the distance of 4.944 km to the aircraft, it may affect the VOR signals.

参考文献

[1] LAO K, WONG M, DAI N, et al. Analysis of the effects of operation voltage range in flexible DC control on railway HPQC compensation capability in high-speed co-phase railway power[J]. IEEE Transactions on Power Electronics, 2018, 33(2):1760-1774.
[2] 陈民武, 李群湛, 魏光. 新型同相牵引供电系统设计与评估[J]. 中国铁道科学, 2009, 30(5):76-82. CHEN M W, LI Q Z, WEI G. The design and evaluation of new cophase traction power supply system[J]. China Railway Science, 2009, 30(5):76-82(in Chinese).
[3] LI X, ZHU F, LU H, et al. Longitudinal propagation characteristic of pantograph arcing electromagnetic emission with high-speed train passing the articulated neutral section[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(2):319-326.
[4] LU H, ZHU F,LIU Q, et al. Suppression of cable overvoltage in a high-speed electric multiple units system[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(2):361-371.
[5] 牛大鹏, 朱峰, 邱日强, 等. 高铁离线电弧射频和车内低频电磁暴露的特性研究[J]. 高电压技术, 2016, 42(8):2587-2595. NIU D P, ZHU F, QIU R Q, et al. Study on the characteristics of off-line arc's radio-frequency and low-frequency electromagnetic exposure inside the high speed rail train[J]. High Voltage Engineering, 2016, 42(8):2587-2595(in Chinese).
[6] 张林昌, 徐坤生, 蒋忠涌. 电气化铁道干扰源的特性及测量[J]. 北方交通大学学报, 1980(2):13-29. ZHANG L C, XU K S, JIANG Z Y. Characteristic and measurement of interference source for electrified railway[J]. Journal of Beijing Jiaotong University, 1980(2):13-29(in Chinese).
[7] 张林昌, 蒋守宁. 用正弦信号源研究电气化铁道无线电干扰的横向电波传播特性[J]. 北方交通大学学报, 1993(4):351-355. ZHANG L C, JIANG S N. Study on transverse radio wave propagation characteristics of radio interference in electrified railway with sinusoidal signal source[J]. Journal of Beijing Jiaotong University, 1993(4):351-355(in Chinese).
[8] 朱峰, 高晨轩, 唐毓涛. 弓网电弧对机场终端全向信标台电磁骚扰的影响[J]. 中国铁道科学, 2018,39(1):116-121. ZHU F, GAO C X, TANG Y T. Influence of pantograph-catenary arc on electromagnetic disturbance of airport terminal omnidirectional beacon[J]. China Railway Science, 2018, 39(1):116-121(in Chinese).
[9] 铁道部工程设计鉴定中心. 通信线路及其他设施电磁干扰防护工程设计指南[M]. 北京:中国铁道出版社,2009:65-74. Engineering Design and Appraisal Center of the Ministry of Railways. Design guidelines for electromagnetic interference protection engineering of communication lines and other facilities[M]. Beijing:China Railway Press, 2009:65-74(in Chinese).
[10] 张育明. 铁路客运专线对机场导航台站的影响评价[J]. 科技创业月刊, 2009, 22(7):85-86. ZHANG Y M. The influence of passenger dedicated railway to the airdrome navigation control station[J]. Pioneering with Science & Technology Monthly, 2009, 22(7):85-86(in Chinese).
[11] 罗安海. 高速铁路对机场导航设施干扰影响模拟测试研究[J]. 中国铁路, 2011(6):13-15. LUO A H. Research on simulative testing for high speed railway's interference to navigation system of airport[J]. Chinese Railways, 2011(6):13-15(in Chinese).
[12] BELLAN D,SPADACINI G, FEDELI E, et al. Space-frequency analysis and experimental measurement of magnetic field emissions radiated by high-speed railway systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6):1031-1042.
[13] 余俊, 陆阳, 王延哲, 等. 动车组、机车及地铁整车对外电磁干扰特性研究[J]. 铁道机车车辆, 2016, 36(3):107-110, 116. YU J, LU Y, WANG Y Z, et al. Research on the EMI characteristics of EMU and locomotives and subway train[J]. Railway Locomotive & Car, 2016, 36(3):107-110, 116(in Chinese).
[14] 中华人民共和国铁道部. 轨道交通电磁兼容第2部分:整个轨道系统对外界的发射:GB/T 24338.2-2011[S]. 北京:中国标准出版社, 2011. Railway Ministry of the People's Republic of China. Railway applications-Electromagnetic compatibility-Part 2:Emission of the whole railway system to the outside word:GB/T 24338.2-2011[S]. Beijing:Chinese Standard Press, 2011(in Chinese).
[15] 杨晓嘉, 朱峰, 邱日强, 等. 弓网电弧辐射特性及对机场下滑信标的影响[J]. 航空学报, 2018, 39(1):321252. YANG X J, ZHU F, QIU R Q, et al. Radiation characteristics of pantograph-catenary arc and its influence on airport glide beacon[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):321252(in Chinese).
[16] 马云双, 刘志刚, 马岚, 等. 动车组弓网离线放电电磁骚扰源模型研究[J]. 中国铁道科学, 2013, 34(5):76-81. MA Y S, LIU Z G, MA L, et al. Electromagnetic disturbance source model of discharge upon pantograph-catenary disconnection of EMU[J]. China Railway Science, 2013, 34(5):76-81(in Chinese).
[17] 孙小康. 过分相区弓网离线产生电磁骚扰的特性研究[D]. 北京:北京交通大学, 2018. SUN X K. Research on the characteristics of electromagnetic disturbance from the off-line of pantograph and catenary[D]. Beijing:Beijing Jiaotong University, 2018(in Chinese).
[18] 张育明, 卫中安. 综合客运交通中机场电磁环境影响分析[J]. 环境技术, 2014(S1):181-186. ZHANG Y M, WEI Z A. Analysis of airport electromagnetic environment effects from synthesized passenger transportation[J]. Environmental Technology, 2014(S1):181-186(in Chinese).
[19] 苟江川, 朱峰, 邹杰, 等. 弓网电弧对航空器仪表着陆系统的电磁干扰影响研究[J].铁道学报, 2018, 40(7):61-66. GOU J C, ZHU F, ZOU J, et al. Research on EMI of instrument landing system on aircraft caused by pantograph arc[J]. Journal of the China Railway Society, 2018, 40(7):61-66(in Chinese).
[20] 郑忠国. 例解回归分析[M]. 北京:机械工业出版社, 2013:71-157. ZHENG Z G. Case analysis regression analysis[M]. Beijing:Machinery Industry Press, 2013:71-157(in Chinese).
[21] 何平. 数理统计与多元统计[M]. 成都:西南交通大学出版社, 2014:126-142. HE P. Mathematical statistics and multivariate statistics[M]. Chengdu:Southwest Jiaotong University Press, 2014:126-142(in Chinese).
[22] 李希炜, 朱峰. 武广高速铁路轨旁电磁干扰实测及分析[J].铁道标准设计, 2014, 58(9):121-124. LI X W, ZHU F. Measurement and analysis of wayside EMI on Wuhan-Guangzhou high-speed electrical railway[J]. Railway Standard Design, 2014, 58(9):121-124(in Chinese).
文章导航

/