流体力学与飞行力学

斜爆轰波的波角和法向速度-曲率关系初探

  • 杨理 ,
  • 岳连捷 ,
  • 张新宇
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 中国科学院 力学研究所 高温气体动力学国家重点实验室, 北京 100190;
    3. 中国科学院大学 工程科学学院, 北京 100049

收稿日期: 2019-12-04

  修回日期: 2019-12-19

  网络出版日期: 2020-02-06

基金资助

国家自然科学基金(11672309,11472279)

Preliminary study on wave angle and normal velocity-curvature relation of oblique detonation wave

  • YANG Li ,
  • YUE Lianjie ,
  • ZHANG Xinyu
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-12-04

  Revised date: 2019-12-19

  Online published: 2020-02-06

Supported by

National Natural Science Foundation of China (11672309, 11472279)

摘要

为研究斜劈诱导斜爆轰波的波阵面弯曲效应,以期为斜爆轰的不稳定性及其演化规律提供新的见解,基于加权本质无振荡(WENO)格式空间离散和附加Runge-Kutta方法时间离散的求解器,针对不同的化学反应参数(释热量、放热速率和化学反应区参考长度)条件,开展斜爆轰波的数值计算研究。结果表明斜爆轰波沿波阵面的波角变化可分为3个区域:区域I,波角平滑减小;区域II,波角跃升后衰减;区域III,波角有规律振荡。波阵面法向速度-曲率关系在区域I呈现准垂直直线变化趋势,并伴随着爆轰波强度的不断衰减;在区域III则呈现出"D"形曲线,即由极曲线段、光滑水平变化段和拟线性变化段组成,为类胞格结构的周期性演变;区域II可认为是以上两个区域特征的耦合。不同的化学反应参数对斜爆轰波波阵面的弯曲效应影响存在较大差别。

本文引用格式

杨理 , 岳连捷 , 张新宇 . 斜爆轰波的波角和法向速度-曲率关系初探[J]. 航空学报, 2020 , 41(11) : 123701 -123701 . DOI: 10.7527/S1000-6893.2020.23701

Abstract

To provide an insight into the instability of oblique detonation waves and the evolution law of cellular-like structures, a numerical study on the curvature effect of wedge induced oblique detonation waves is conducted with different chemical kinetic parameters (heat release quality, heat release ratio and reference lengths of chemical reaction zones). The solver based on the Weighted Essentially Non-Oscillatory (WENO) scheme processed spatial discretization and additive Runge-Kutta method processed time discretization is used here. The numerical results show that the trend of the wave angles along the oblique detonation wave front can be divided into three regions: Region I, where the wave angles decrease smoothly; Region II, in which the wave angles experience a steep increase first and followed then by decay; Region III, where the wave angles exhibit an oscillation. The normal velocity-curvature relation in Region I is a quasi-vertical line with the flow field being a decaying oblique detonation wave. A "D" shaped curve consisting of a polar line, a smooth horizon curve and a quasilinear curve can be found in the normal velocity-curvature diagram for Region III, where a cycle evolution of cellular-like structures occurs in the front. Region II is deemed as the coupling effect of Regions I and III. Different chemical kinetic parameters bring diverse effects on the oblique detonation wave front.

参考文献

[1] LEE J H S. The detonation phenomenon[M].Cambridge:Cambridge University Press,2008.
[2] WOLANSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158.
[3] CHAN J, SISLIAN J P, ALEXANDER D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5):1125-1134.
[4] 夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2):121438. XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121438(in Chinese).
[5] 沈洋, 刘凯欣, 陈璞, 等. 采用改进的CE/SE方法模拟方管中氢氧爆轰波的稳定传播结构[J]. 航空学报, 2019, 40(5):122591. SHEN Y, LIU K X, CHEN P, et al. Simulations of stable structure in oxy-hydrogen detonation propagation in square ducts using an improved CE/SE scheme[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122591(in Chinese).
[6] 徐灿, 马虎, 李健, 等. 旋转爆震发动机火焰与压力波传播特性[J]. 航空学报, 2017, 38(10):121226. XU C, MA H, LI J, et al. Propagation property of flame and pressure wave in rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121226(in Chinese).
[7] TENG H H, JIANG Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713:659-669.
[8] MIAO S, ZHOU J, LIU S, et al. Formation mechanisms and characteristics of transition patterns in oblique detonations[J]. Acta Astronautica, 2018, 142:121-129.
[9] ZHANG Y, YANG P, TENG H, et al. Transition between different initiation structures of wedge-induced oblique detonations[J]. AIAA Journal, 2018, 56(10):4016-4023.
[10] CHOI J Y, KIM D W, JEUNG I S, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2):2473-2480.
[11] VERREAULT J, HIGGINS A J, STOWE R A. Formation of transverse waves in oblique detonations[J]. Proceedings of the Combustion Institute, 2013, 34(2):1913-1920.
[12] TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations[J]. Journal of Fluid Mechanics, 2014, 744:111-128.
[13] LIU Y, HAN X, YAO S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge[J]. Shock Waves, 2016, 26(6):729-739.
[14] KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles[J]. AIAA Journal, 2001, 39(8):1553-1561.
[15] BDZIL J B, STEWART D S. The dynamics of detonation in explosive systems[J]. Annual Review of Fluid Mechanics, 2006, 39(1):263-292.
[16] YAO J, STEWART D S. On the normal detonation shock velocity-curvature relationship for materials with large activation energy[J]. Combustion and Flame, 1995, 100(4):519-528.
[17] STEWART D S, YAO J. The normal detonation shock velocity-curvature relationship for materials with nonideal equation of state and multiple turning points[J]. Combustion and Flame, 1998, 113(1-2):224-235.
[18] CHIQUETE C, SHORT M, QUIRK J J. The effect of curvature and confinement on gas-phase detonation cellular stability[J]. Proceedings of the Combustion Institute, 2019, 37(3):3565-3573.
[19] JACKSON S I, CHIQUETE C, SHORT M. An intrinsic velocity-curvature-acceleration relationship for weakly unstable gaseous detonations[J]. Proceedings of the Combustion Institute, 2019, 37(3):3601-3607.
[20] LEUNG C, RADULESCU M I, SHARPE G J. Characteristics analysis of the one-dimensional pulsating dynamics of chain-branching detonations[J]. Physics of Fluids, 2010, 22(12):126101.
[21] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[22] ACKER F, BORGES R B R, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313:726-753.
[23] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2):250-258.
[24] EINFELD B. On Godunov-type methods for gas dynamics[J]. SIAM Journal on Numerical Analysis, 1988, 25(2):294-318.
[25] HINDMARSH A C, BROWN P N, GRANT K E, et al. SUNDIALS:Suite of nonlinear and differential/algebraic equation solvers[J]. ACM Transactions on Mathematical Software, 2005, 31(3):363-396.
[26] KENNEDY C A, CARPENTER M H. Additive Runge-Kutta schemes for convection-diffusion-reaction equations[J]. Applied Numerical Mathematics, 2003, 44:139-181.
[27] MEDVEDEV A E. Reflection of an oblique shock wave in a reacting gas with a finite relaxation-zone length[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(2):211-218.
[28] PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal Propulsion, 1991, 7(5):837-845.
[29] OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics, 1997, 352:1-25.
文章导航

/