毫米波波束编码技术在无人机智能集群中的应用

  • 徐磊 ,
  • 周藜莎 ,
  • 李仁俊 ,
  • 顾村锋
展开
  • 上海机电工程研究所, 上海 201100

收稿日期: 2019-12-13

  修回日期: 2019-12-21

  网络出版日期: 2020-01-16

Application of millimeter wave beam coding technology in UAV intelligent swarm

  • XU Lei ,
  • ZHOU Lisha ,
  • LI Renjun ,
  • GU Cunfeng
Expand
  • Shanghai Institute of Mechanical and Electrical Engineering, Shanghai 201100, China

Received date: 2019-12-13

  Revised date: 2019-12-21

  Online published: 2020-01-16

摘要

毫米波波束编码技术由于其速率高、抗干扰能力强的优点被认为是无人机智能集群通信网络的重要解决方案。但在无人机智能集群的通信场景中,多种原因造成的机体不稳定抖动会使通信波束产生小角度偏转,引起通信质量的下降,从而影响无人机集群的控制与决策。针对这一问题,提出一种面向无人机集群通信的自适应波束设计方法。首先,根据传感器回传的机体波束抖动情况建立等效信道模型,随后利用量化的信道模型参数建立目标函数并获得理想的波束编码向量,在此基础上利用几何贪婪算法对其进行分解。仿真结果表明,提出的集群波束编码方法能够有效提高均值通信速率,同时相较于其他的系数分解算法,有效降低了计算复杂度。

本文引用格式

徐磊 , 周藜莎 , 李仁俊 , 顾村锋 . 毫米波波束编码技术在无人机智能集群中的应用[J]. 航空学报, 2020 , 41(S1) : 723754 -723754 . DOI: 10.7527/S1000-6893.2019.23754

Abstract

Millimeter wave beam coding technology is considered as an important solution to the UAV intelligent trunking communication network because of its high speed and strong anti-interference ability. However, in the communication scenario of UAV intelligent swarm, the unstable jitter of the body caused by various reasons will cause small angle deflection of the communication beam, resulting in the decline of the communication quality, thus affecting the control and decision-making of the UAV swarm. To solve this problem, this paper proposes an adaptive beam design method for UAV swarm communication. First, the equivalent channel model is established according to the jitter of the beam measured by the sensor. Then, the objective function is established by using the quantized channel model parameters, and the ideal beam coding vector is obtained. On this basis, the geometric greedy algorithm is used to decompose it. The simulation results show that the proposed scheme can effectively improve the average communication rate and reduce the computational complexity compared with other coefficient decomposition algorithms.

参考文献

[1] 贾顾伟, 汤俊, 白亮, 等. 面向时间协同的多无人机队形变换最优效率模型[J]. 航空学报, 2019, 40(6):322599. JIA G W, TANG J, BAI L, et al. Time synergistic optimal efficienvy model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322599(in Chinese).
[2] 陈川,顾村锋. 基于分布式的隐蔽式探测技术研究[J].空天防御, 2018, 1(4):48-51. CHEN C, GU C F. Concealed detection research based on distributed techniques[J]. Air & Space Defense, 2018, 1(4):48-51(in Chinese).
[3] ZENG Y, ZHANG R, TENG J L. Wireless communications with unmanned aerial vehicles:Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5):36-42.
[4] SUN K P. Cooperative UAV search and intercept[D]. Toronto:University of Toronto, 2009.
[5] XIAO Z, XIA P, XIA X G. Enabling UAV cellular with millimeter-wave communication:Potentials and approaches[J]. IEEE Communications Magazine, 2016, 54(5):66-73.
[6] SONG J, CHOI J, LOVE D J. Common codebook millimeter wave beam design:Designing beams for both sounding and communication with uniform planar arrays[J]. IEEE Transactions on Communications, 2017, 65(4):1859-1872.
[7] NOH S, ZOLTOWSKI M D, LOVE D J. Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment[J]. IEEE Transactions on Wireless Communications, 2015, 16(9):5689-5701.
[8] ALKHATEEB A, AYACH O E, LEUS G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 8(5):831-846.
[9] ZHAO J, GAO F, WU Q, et al. Beam tracking for UAV mounted SatCom on-the-move with massive antenna array[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(2):363-375.
[10] HUR S, KIM T, LOVE D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks[J]. IEEE Transactions on Communications, 2013, 61(10):4391-4403.
[11] ZHONG W, XU L, LU X, et al. Research on millimeter wave communication interference suppression of UAV based on beam optimization[C]//International Conference on Machine Learning and Intelligent Communications.Berlin:Springer, 2017.
[12] 郑婷婷. 面向高速移动平台的毫米波波束成形与波束追踪技术研究[D]. 北京:北京邮电大学,2018. ZHENG T T. Millimeter wave beamforming and beam tracking for high speed mobile platforms[D]. Beijing:Beijing University of Posts and Telecommunications, 2018(in Chinese).
[13] KAUSHIK A, THOMPSON J, YAGHOOBI M. Sparse hybrid precoding and combining in millimeter wave MIMO systems[C]//Radio Propagation & Technologies for 5G. London:IET, 2017.
[14] 仲伟志, 徐磊, 朱秋明, 等. 面向天线互耦效应抑制的波束预编码算法[J]. 西安电子科技大学学报, 2018, 45(6):86-91. ZHONG W Z, XU L, ZHU Q M, et al. Beam precoding algorithm for antenna mutual coupling effect suppression[J]. Journal of Xidian University, 2018, 45(6):86-91(in Chinese).
[15] ZHONG W Z, XU L. Research on millimeter wave communication interference suppression of UAV based on beam optimization[C]//International Conference on Machine Learning and Intelligent Communications, 2018:472-481.
[16] 徐俊. 多无人机的组群飞行特性与控制分析[D]. 南京:南京理工大学,2017. XU J. Group flight characteristics and control analysis of multiple UAVs[D]. Nanjing:Nanjing University of Science & Technology, 2017.
[17] 蔡青松. 毫米波混合波束成形技术研究[D]. 西安:西安电子科技大学,2015. CAI Q S. Research on millimeter wave hybrid beamforming technology[D]. Xi'an:Xidian University, 2015(in Chinese).
[18] AYACH O E, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3):1499-1513.
文章导航

/