[1] 王彦广, 李健全, 李勇,等. 近空间飞行器的特点及其应用前景[J]. 航天器工程, 2007(1):50-57. WANG Y G, LI J Q, LI Y. Characters and application prospects of near space flying vehicles[J]. Spacecraft Engineering, 2007(1):50-57(in Chinese).
[2] 聂万胜, 罗世彬, 丰松江, 等. 近空间飞行器关键技术及其发展趋势分析[J]. 国防科技大学学报, 2012, 34(2):107-113. NIE W S, LUO S B, FENG S J, et al. Analysis of key technologies and development trend of near space vehicle[J]. Journal of National University of Defense Technology, 2012,34(2):107-113(in Chinese).
[3] MARK A S, DEAN C. China's evolving space capabilities[R]. Washington,D.C.:The U.S.-China Economic and Security Review Commission,2012.
[4] 李国忠, 于廷臣, 赖正华. 美国X-51A高超声速飞行器的发展与思考[J]. 飞航导弹, 2014(5):5-8,21. LI G Z, YU T C, LAI Z H. Development and reflection of the U.S. X-51A hypersonic vehicle[J]. Aerodynamic Missile Journal, 2014(5):5-8,21(in Chinese).
[5] CHRISTOPHER M R, TIMOTHY R J. X-51A scramjet demonstrator program:Waverider ground and flight test[C]//SFTE 44th International/SETP Southwest Flight Test Symposium, 2013.
[6] XinHua. Russia's hypersonic "Avangard" missiles enter series production[EB/OL]. Xinhua News Agency,(2018-03-05)[2019-11-01]. http://www.xinhuanet.com/english/2018-03/05/c_137015989.htm.
[7] STEFFES S R, STEPHAN T, MALAK S, et al. Flight results from the SHEFEX2 hybrid navigation system experiment[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2012.
[8] BLOCK R F, GESSLER G F, PANTER W C, et al. The challenges of hypersonic-vehicle guidance, navigation, and control[C]//Space Programs & Technologies Conference. Reston:AIAA, 2006.
[9] 李建林. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012:126-132. LI J L. Research on the development of hypersonic vehicle in near space[M]. Beijing:China Astronautic Publishing House, 2012:126-132(in Chinese).
[10] MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005.
[11] 文苏丽, 蒋琪. SHEFEX-2的组合导航系统[J]. 飞航导弹, 2010(9):64-68. WEN S L, JIANG Q. Integrated navigation system of SHEFEX-2[J]. Aerodynamic Missile Journal, 2010(9):64-68(in Chinese).
[12] LAWRENCE O B, DARIN P H. Flutter and divergence Assessment of the HyFly Missile[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2009.
[13] STEVEN W, JEFFREY S, DALE S, et al. The DARPA/AF falcon program:The hypersonic Technology vehicle #2(HTV-2) flight demonstration phase[C]//AIAA International Space Planes & Hypersonic Systems & Technologies Conference. Reston:AIAA, 2008.
[14] GRANTZ A. X-37B orbital test vehicle and derivatives[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA, 2011.
[15] JOHN T, JOSEF E, MARCUS HE, et al. SHEFEX Ⅱ vehicle and subsystem design, flight performance and their application to future hypersonic missions[C]//21st European Rocket and Balloon Programmes and Related. Thun:European Space Agency, 2013.
[16] 林旭斌, 张灿. 俄罗斯新型高超声速打击武器研究[J]. 战术导弹技术, 2019(1):19-24. LIN X B, ZHANG C. Research on new Russian hypersonic strike weapon[J]. Tactical Missile Technology, 2019(1):19-24(in Chinese).
[17] 宫朝霞, 李文杰. 美国NAI的高速与高超声速科技计划[J]. 飞航导弹, 2007(11):16-21. GONG C X, LI W J. The high-speed and hypersonic technology plan of the U.S. NAI[J]. Aerodynamic Missile Journal, 2007(11):16-21(in Chinese).
[18] 李海林, 吴德伟. 高超声速临近空间武器平台导航方案研究[J]. 飞航导弹, 2012(2):72-78,84. LI H L, WU D W. Research on navigation schemes of hypersonic vehicles in near space[J]. Aerodynamic Missile Journal, 2012(2):72-78,84(in Chinese).
[19] JASON S. DOD flies experimental hypersonic payload; claims success, technological advances[EB/OL]. InsideDefense.com (2017-09-02)[2019-11-01]. https://insidedefense.com/daily-news/dod-flies-experimental-hypersonic-payload-claims-success-technological-advances.
[20] 李凡, 熊家军, 张凯, 等. 临近空间高超声速目标跟踪动力学模型[J]. 宇航学报, 2019, 40(3):266-276. LI F, XIONG J J, ZHANG K, et al. Near space hypersonic target dynamics tracking model[J]. Journal of Astronautics, 2019, 40(3):266-276(in Chinese).
[21] RICHARD S. Navy pushes hypersonic weapon plan as putin boasts he already has them[EB/OL]. Military.com,(2018-12-28)[2019-11-01]. https://www.military.com/defensetech/2018/12/28/navy-pushes-hypersonic-weapon-plan-putin-boasts-he-already-has-them.html.
[22] 雷宏杰, 张亚崇. 机载惯性导航技术综述[J]. 航空精密制造技术, 2016, 52(1):7-12. LEI H J, ZHANG Y C. Review of airborne inertial navigation technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(1):7-12(in Chinese).
[23] 张伟, 张恒. 天文导航在航天工程应用中的若干问题及进展[J]. 深空探测学报, 2016(3):204-213. ZHANG W, ZHANG H. Research on problems of celestial navigation in space engineering[J]. Journal of Deep Space Exploration, 2016, 3(3):204-213(in Chinese).
[24] 全伟, 刘百奇, 宫晓琳, 等. 惯性、天文、卫星组合导航技术[M]. 北京:国防工业出版社, 2011:32-48. QUAN W, LIU B Q, GONG X L, et al. INS/CNS/GNSS integrated navigation technology[M]. Beijing:National Defense Industry Press, 2011:32-48(in Chinese).
[25] 卢欣, 李春艳, 李晓, 等. 星光导航技术现状与发展综述[J]. 空间控制技术与应用, 2017, 43(4):1-8. LU X, LI C H Y, LI X, et al. Current situation and development trends of starlight navigation technology[J]. Aerospace Control and Application, 2017, 43(4):1-8(in Chinese).
[26] ROBINSON E C, BASS J N, BHAVNANI K H, et al. Models of the near-space geophysical environment:PL-TR-97-2089[R]. Boston:Phillips Lab Hanscom AFB MA, 1997.
[27] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901-1913. SUN C Y, MU Z X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese).
[28] 程旋, 肖存英, 胡雄. 临近空间大气环境对高超声速飞行器气动特性的影响研究进展[J]. 飞航导弹, 2018(5):22-28. CHENG X, XIAO C Y, HU X. Research advance on the influence of near space atmosphere on the aerodynamic characteristics of hypersonic vehicles[J]. Aerodynamic Missile Journal, 2018(5):22-28(in Chinese).
[29] STEFFES S R. Real-time navigation algorithm for the SHEFEX-2 hybrid navigation system experiment[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2012.
[30] NILS N, MALAK S, MICHEAL C, et al. Attitude determination for the SHEFEX-2 mission using a low cost star tracker[C]//AIAA Guidance, Navigation, & Control Conference. Reston:AIAA, 2009.
[31] 闫杰, 于云峰, 凡永华, 等. 吸气式高超声速飞行器控制技术[M]. 西安:西北工业大学出版社, 2015:265-269. YAN J, YU Y F, FAN Y H, et al. Control technology of air-breathing hypersonic vehicle[M]. Xi'an:Northwestern Polytechnical University Press, 2005:265-269(in Chinese).
[32] SAMAAN M, THEIL S. Development of a low cost star tracker for the SHEFEX mission[J]. Aerospace Science and Technology, 2012, 23(1):469-478.
[33] 刘垒, 张路, 郑辛, 等. 星敏感器技术研究现状及发展趋势[J]. 红外与激光工程, 2007, 36(S2):529-533. LIU L, ZHANG L, ZHENG X, et al. Current situation and development trends of star sensor technology[J]. Infrared and Laser Engineering, 2007, 36(S2):529-533(in Chinese).
[34] 史少龙, 尹达一. CMOS APS噪声对星斑质心定位精度的影响[J]. 光电工程, 2013, 40(6):11-16. SHI S L, YIN D Y. CMOS APS noise effect on position accuracy of star tracker[J]. Opto-Electronic Engineering, 2013, 40(6):11-16(in Chinese).
[35] 万磊, 贾平, 张叶, 等. 飞行器姿态对CMOS航空相机成像的影响[J]. 光学精密工程, 2016, 24(1):203-209. WAN L, JIA P, ZHANG Y, et al. Effect of aircraft attitude on imaging of CMOS aerial cameras[J]. Optics and Precision Engineering, 2016, 24(1):203-209(in Chinese).
[36] 何家维, 何昕, 魏仲慧, 等. 高灵敏度EMCCD导航相机的设计[J]. 光学精密工程, 2018, 26(12):3019-3027. HE J W, HE X, WEI Z H, et al. Design of high-sensitivity EMCCD navigation camera[J]. Optics and Precision Engineering, 2018, 26(12):3019-3027(in Chinese).
[37] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学, 2016, 9(1):16-29. LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1):16-29(in Chinese).
[38] 魏合理, 陈秀红, 余凯, 等. 白天CCD观星可探测极限星等值分析[J]. 强激光与粒子束, 2007(2):187-192. WEI H L, CHEN X H, YU K, et al. Analysis of the detectable stellar magnitude limit using CCD camera in daytime sky background[J]. High Power Laser and Particle Beams, 2007(2):187-192(in Chinese).
[39] 韩艳丽, 郭晓军, 娄树理. 短波红外全天时自主天文导航技术展望[J]. 海军航空工程学院学报, 2013, 28(3):323-328. HAN Y L, GUO X J, LOU S L, et al. Prospect of the self-determination celestial navigation technology with daytime SWIR[J]. Journal of Naval Aeronautical and Astronautical, 2013, 28(3):323-328(in Chinese).
[40] 褚连胜, 郭阳宽, 王海军. 基于CMOS的星敏感器白天观星能力分析[J]. 北京信息科技大学学报(自然科学版), 2018, 33(1):23-26. CHU L SH, GUO Y K, WANG H J. Star detecting performance of CMOS star sensor in daytime[J]. Journal of Beijing Information Science & Technology University, 2018, 33(1):23-26(in Chinese).
[41] 于春蕾, 李雪, 邵秀梅, 等. 短波红外InGaAs焦平面噪声特性[J]. 红外与毫米波学报, 2019, 38(4):528-534. YU C L, LI X, SHAO X M, et al. Noise characteristics of short wave infrared InGaAs focal plane arrays[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4):528-534(in Chinese).
[42] LIEBE C C. Accuracy performance of star trackers-a tutorial[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2):587-599.
[43] JUMPER E J, GORDEYEV S. Physics and measurement of aero-optical effects:Past and present[J]. Annual Review of Fluid Mechanics, 2017, 49(1):419-441.
[44] PETER O, DONALD S, DANIEL M. The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization[C]//16th AIAA/DLR/DGLR International Space and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2009.
[45] 杨文霞, 蔡超, 丁明跃, 等. 超音速/高超音速飞行器湍流流场气动光学效应分析[J]. 光电工程, 2009, 36(1):88-92. YANG W X, CAI C, DING M Y, et al. Numerical analysis of aero-optic effects induced by the turbulence flow field surrounding super/hypersonic[J]. Opto-Electronic Engineering, 2009, 36(1):88-92(in Chinese).
[46] 王乃祥, 徐钰蕾, 惠守文, 等. 高马赫航空遥感器光学窗口的光机热分析[J]. 长春理工大学学报(自然科学版), 2014, 37(3):5-8. WANG N X, XU Y L, HUI S W, et al. Optical/structural/thermal analysis of optical window of high-maher airborne remote sensor[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(3):5-8(in Chinese).
[47] 石进峰, 吴清文, 张建萍, 等. 高空高速航空相机光学窗口的热光学分析[J]. 光学学报, 2012, 32(4):235-243. SHI J F, WU Q W, ZHANG J P, et al. Thermal-optical analysis for optical window of high-altitude and high-speed aerial camera[J]. Acta Optica Sinica, 2012, 32(4):235-243(in Chinese).
[48] 韩炜, 赵跃进, 胡新奇, 等. 超高声速飞行器光学窗口气动光学效应分析[J]. 光学技术, 2010, 36(4):622-626. HAN W, ZHAO Y J, HU X Q, et al. Study on aero-optical effects of hypersonic vehicle's optical window[J]. Optical Technique, 2010, 36(4):622-626(in Chinese).
[49] WANG M, MANI A, GORDEYEV S. Physics and computation of aero-optics[J]. Annual Review of Fluid Mechanics, 2012, 44(1):299-321.
[50] 熊晓月, 费锦东, 陈澄, 等. 气动光学效应内涵及其对成像探测的影响机理[J]. 现代防御技术, 2017(3):139-146. XIONG X Y, FEI J D, CHEN C, et al. Connotation of aero-optical effect and its influence mechanism on imaging detection[J]. Modern Defence Technology, 2017(3):139-146(in Chinese).
[51] 吴德伟, 景井, 李海林. 临近空间环境对高超声速飞行器导航系统的影响分析[J]. 飞航导弹, 2012(12):73-80. WU D W, JING J, LI H L. Influence analysis of near space environment on hypersonic vehicle navigation system[J]. Aerodynamic Missile Journal, 2012(12):73-80(in Chinese).
[52] 易仕和, 陈植, 朱杨柱, 等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1):98-119. YI S H, CHEN Z, ZHU Y Z, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):98-119(in Chinese).
[53] WANG M, MANI A, GORDEYEV S. Physics and computation of aero-optics[J]. Annual Review of Fluid Mechanics, 2012, 44(1):299-321.
[54] SALOMON P M. Charge-coupled device (CCD) trackers for high-accuracy guidance applications[J]. Optical Engineering, 1982, 20(1):135-142.
[55] 张广军. 星图识别[M]. 北京:国防工业出版社, 2011:12-21. ZHANG G J. Star identification[M]. Beijing:National Defense Industry Press, 2011:12-21(in Chinese).
[56] 曾芬, 刘金国, 左洋, 等. 基于多视场星敏感器的姿态确定方法[J]. 计算机测量与控制, 2015, 23(2):548-550. ZENG F, LIU J G, ZUO Y, et al. Attitude determination method of star sensor based on multiple fields of view[J]. Computer Measurement & Control, 2015, 23(02):548-550(in Chinese).
[57] 詹银虎, 郑勇, 张超, 等. 超大视场太阳敏感器图像质心提取算法[J]. 测绘学报, 2015,44(10):1078-1084. ZHAN Y H, ZHENG Y, ZHANG C, et al. Image centroid algorithms for sun sensors with super wide field of view[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(10):1078-1084(in Chinese).
[58] 李崇辉. 基于鱼眼相机的舰船天文导航技术研究[D]. 郑州:解放军信息工程大学, 2013:92-122. LI C H. Research on marine celestial navigation based on fisheye camera[D]. Zheng Zhou:PLA Information Engineering University, 2013:92-122(in Chinese).
[59] 房建成, 宁晓琳, 刘劲. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社, 2017:151-155. FANG J C, NING X L, LIU J. Principles and methods of spacecraft celestial navigation[M]. Beijing:National Defense Industry Press, 2017:151-155(in Chinese).
[60] LIEBE C C, GROMOV K, MELLER D M. Toward a stellar gyroscope for spacecraft attitude determination[J]. Journal of Guidance Control & Dynamics, 2004, 27(1):91-99.
[61] KOLOMENKIN M, POLLAK S, SHIMSHONI I, et al. Geometric voting algorithm for star trackers[J]. IEEE Transactions on Aerospace & Electronic Systems, 2008, 44(2):441-456.
[62] SCHMIDT U. Astro APS-The next generation Hi-Rel Star tracker based on active pixel sensor technology[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
[63] KATAKE A B. Modeling, image processing and attitude estimation of high speed star sensors[D]. College Station:Texas A&M University, 2006:22-32.
[64] STEFFES S R, SAMAAN M A, THEIL S. Alignment between IMU and star tracker using the night sky and an on-board navigation system[J]. Advances in the Astronautical Sciences, 2012, 144:173-186.
[65] 钟红军, 杨孟飞, 卢欣. 星敏感器标定方法研究[J]. 光学学报, 2010, 30(5):1343-1348. ZHONG H J, YANG M F, LU X. Calibration method of star sensor[J]. Acta Optica Sinica, 2010, 30(5):1343-1348(in Chinese).
[66] VEDDER J D. Star trackers, star catalogs, and attitude determination-Probabilistic aspects of system design[J]. Journal of Guidance Control & Dynamics, 1992, 16(3):498-504.
[67] 崔祥祥, 王宏力, 陆敬辉, 等. 适用于小视场星敏感器的导航星表构建方法[J]. 红外与激光工程, 2015, 44(4):1249-1253. CUI X X, WANG H L, LU J H, et al. Guide star selection method for star tracker with thin field of view[J]. Infrared and Laser Engineering, 2015, 44(4):1249-1253(in Chinese).
[68] 叶志龙, 孙朔冬, 陈纾, 等. 一种基于恒星分布的星敏感器导航星库制作方法[J]. 深空探测学报, 2018, 5(1):90-96. YE ZH L, SUN S D, CHEN S, et al. Establishment of a navigation star database on star distribution[J]. Journal of Deep Space Exploration, 2018, 5(1):90-96(in Chinese).
[69] 朱海龙, 梁斌, 张涛. 基于局部敏感哈希的导航星库快速搜索算法[J]. 西北工业大学学报, 2018, 36(5):988-994. ZHU H L, LIANG B, ZHANG T. Fast access for star catalog based on locality-sensitive hashing[J]. Journal of Northwestern Polytechnical University, 2018, 36(5):988-994(in Chinese).
[70] 刘炳琪, 魏诗卉, 苏国华, 等. 中远程导弹惯性/星光组合导航关键技术及研究现状[J]. 系统工程理论与实践, 2019, 39(5):1351-1362. LIU B Q, WEI S H, SU G H, et al. Key techniques and current research status of INS/CNS integrated navigation on intermediate-range missile[J]. Systems Engineering-Theory & Practice, 2019, 39(5):1351-1362(in Chinese).
[71] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
[72] 徐世南, 吴催生. 高超声速飞行器热力环境数值仿真研究综述[J]. 飞航导弹, 2019(7):26-30. XU S N, WU C S. Review on numerical simulation of hypersonic vehicle thermal environment[J].Aerodynamic Missile Journal, 2019(7):26-30(in Chinese).
[73] 谭威. 星敏感器光学系统的温度分布及其对像面位移的影响研究[D]. 长沙:国防科学技术大学, 2008:26-54. TAN W. The study of temperature distribution and its effects on image shifting of the star sensor optics system[D]. Changsha:National University of Defense Technology, 2008:26-54(in Chinese).
[74] 程伟宁. 宽谱段宽视场星敏感器光学系统设计[D]. 哈尔滨:哈尔滨工业大学, 2009:33-37. CHENG W N. Optical system design of a star sensor with wide spectrum and wide field of view[D]. Harbin:Harbin Institute of Technology, 2009:33-37(in Chinese).
[75] 姜笛, 张科, DEBEIR O. 基于最优路径的多视场全天自主星图识别[J]. 系统工程与电子技术, 2019, 41(1):148-153. JIANG D, ZHANG K, DEBEIR O. All-sky autonomous star recognition for multi-FOV star sensors based on optimal path[J]. Systems Engineering and Electronics, 2019, 41(1):148-153(in Chinese).
[76] 陆壮志, 周鑫, 万志江, 等. 应用形状因子特征的高效星图识别[J]. 应用光学, 2018, 39(3):349-354. LU Z Z, ZHOU X, WAN Z J, et al. Efficient star identification algorithm based on shape factor features[J]. Journal of Applied Optics, 2018, 39(3):349-354(in Chinese).
[77] 王军, 何昕, 魏仲慧, 等. 基于多特征匹配的快速星图识别[J]. 光学精密工程, 2019, 27(8):1870-1879. WANG J, HE X, WEI Z H, et al. Fast star identification algorithm based on multi-feature matching[J]. Optics and Precision Engineering, 2019, 27(8):1870-1879(in Chinese).
[78] 王宏力, 陆敬辉, 崔祥祥. 大视场星敏感器星光制导技术及应用[M]. 北京:国防工业出版社, 2015:6-8. WANG H L, LU J H, CUI X X. Starlight guidance technology and application of wide VOF star sensor[M]. Beijing:National Defense Industry Press, 2015:6-8(in Chinese).
[79] YING D, FEI X, ZHENG Y. An APS-based autonomous star tracker[C]//Advanced Materials and Devices for Sensing and Imaging Ⅱ. Beiing:International Society for Optics and Photonics, 2005.
[80] 杜康, 刘春雨, 谢运强,等. 基于非球面的大相对孔径微型星敏感器镜头设计[J]. 仪器仪表学报, 2019, 40(6):96-103. DU K, LIU C Y, XIE Y Q, et al. Lens design of micro star sensor with large aperture based on aspheric surface[J]. Chinese Journal of Scientific Instrument, 2019, 40(6):96-103(in Chinese).
[81] 苏畅. 星敏感器星图降噪预处理及其硬件实现[D]. 哈尔滨:哈尔滨工业大学, 2017:1-4. SU C. Pre-processing of star sensor image denoising and hardware implementation[D]. Harbin:Harbin Institute of Technology, 2017:1-4(in Chinese).
[82] 孙鹏, 赵欣, 刘伟, 等. 一体化星敏感器温度控制措施及试验验证[J]. 航天器工程, 2018, 27(2):119-123. SUN P, ZHAO X, LIU W, et al. Temperature control method and test verification for integrated star sensor[J]. Spacecraft Engineering, 2018, 27(2):119-123(in Chinese).