星光导航技术专栏

临近空间高超声速飞行器天文导航系统综述

  • 陈冰 ,
  • 郑勇 ,
  • 陈张雷 ,
  • 章后甜 ,
  • 刘新江
展开
  • 1. 信息工程大学, 郑州 450001;
    2. 洛阳理工学院 土木工程学院, 洛阳 471023;
    3. 32021 部队, 天津 300140

收稿日期: 2019-11-27

  修回日期: 2019-12-22

  网络出版日期: 2020-01-16

基金资助

国家自然科学基金(11673076,41604011)

A review of celestial navigation system on near space hypersonic vehicle

  • CHEN Bing ,
  • ZHENG Yong ,
  • CHEN Zhanglei ,
  • ZHANG Houtian ,
  • LIU Xinjiang
Expand
  • 1. Information Engineering University, Zhengzhou 450001, China;
    2. Department of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China;
    2. Troop 32021, Tianjin 300140, China

Received date: 2019-11-27

  Revised date: 2019-12-22

  Online published: 2020-01-16

Supported by

National Natural Science Foundation of China (11673076,41604011)

摘要

临近空间是航天与航空业务领域的结合部,具有重要的战略价值。高超声速飞行器是临近空间力量部署的重要载体,已逐渐进入应用部署阶段。临近空间高超声速飞行器的飞行环境和任务条件对导航系统提出了新的更高要求。在总结临近空间高超声速飞行器的导航技术研究进展的基础上,对天文导航技术的应用环境和条件进行了系统的分析和探讨,提出了5个重点研究方向,包括:星图采集效能、光学误差模型、视场观测机理、姿态更新速率、小型化模块化工程化等。研究结果可为临近空间高超声速飞行器天文导航系统的设计提供参考。

本文引用格式

陈冰 , 郑勇 , 陈张雷 , 章后甜 , 刘新江 . 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020 , 41(8) : 623686 -623686 . DOI: 10.7527/S1000-6893.2019.23686

Abstract

Near space is at the interface of aeronautics and astronautics issues and has a significant strategic value. Hypersonic vehicle is an important carrier for the forces deployment in near space and has entered its application stage. The flight environment and mission condition of near space hypersonic vehicles require better performance of the navigation system. This paper summarizes the development of navigation technology on near space hypersonic vehicles, analyzes the application of astronomical navigation technology, and puts forward five key research directions, including efficient star map identification, optical error model, field of view observation mechanism, attitude update rate, and miniaturization and modular engineering. The results can be used as a reference for the design of celestial navigation system for near space hypersonic vehicles.

参考文献

[1] 王彦广, 李健全, 李勇,等. 近空间飞行器的特点及其应用前景[J]. 航天器工程, 2007(1):50-57. WANG Y G, LI J Q, LI Y. Characters and application prospects of near space flying vehicles[J]. Spacecraft Engineering, 2007(1):50-57(in Chinese).
[2] 聂万胜, 罗世彬, 丰松江, 等. 近空间飞行器关键技术及其发展趋势分析[J]. 国防科技大学学报, 2012, 34(2):107-113. NIE W S, LUO S B, FENG S J, et al. Analysis of key technologies and development trend of near space vehicle[J]. Journal of National University of Defense Technology, 2012,34(2):107-113(in Chinese).
[3] MARK A S, DEAN C. China's evolving space capabilities[R]. Washington,D.C.:The U.S.-China Economic and Security Review Commission,2012.
[4] 李国忠, 于廷臣, 赖正华. 美国X-51A高超声速飞行器的发展与思考[J]. 飞航导弹, 2014(5):5-8,21. LI G Z, YU T C, LAI Z H. Development and reflection of the U.S. X-51A hypersonic vehicle[J]. Aerodynamic Missile Journal, 2014(5):5-8,21(in Chinese).
[5] CHRISTOPHER M R, TIMOTHY R J. X-51A scramjet demonstrator program:Waverider ground and flight test[C]//SFTE 44th International/SETP Southwest Flight Test Symposium, 2013.
[6] XinHua. Russia's hypersonic "Avangard" missiles enter series production[EB/OL]. Xinhua News Agency,(2018-03-05)[2019-11-01]. http://www.xinhuanet.com/english/2018-03/05/c_137015989.htm.
[7] STEFFES S R, STEPHAN T, MALAK S, et al. Flight results from the SHEFEX2 hybrid navigation system experiment[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2012.
[8] BLOCK R F, GESSLER G F, PANTER W C, et al. The challenges of hypersonic-vehicle guidance, navigation, and control[C]//Space Programs & Technologies Conference. Reston:AIAA, 2006.
[9] 李建林. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012:126-132. LI J L. Research on the development of hypersonic vehicle in near space[M]. Beijing:China Astronautic Publishing House, 2012:126-132(in Chinese).
[10] MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005.
[11] 文苏丽, 蒋琪. SHEFEX-2的组合导航系统[J]. 飞航导弹, 2010(9):64-68. WEN S L, JIANG Q. Integrated navigation system of SHEFEX-2[J]. Aerodynamic Missile Journal, 2010(9):64-68(in Chinese).
[12] LAWRENCE O B, DARIN P H. Flutter and divergence Assessment of the HyFly Missile[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2009.
[13] STEVEN W, JEFFREY S, DALE S, et al. The DARPA/AF falcon program:The hypersonic Technology vehicle #2(HTV-2) flight demonstration phase[C]//AIAA International Space Planes & Hypersonic Systems & Technologies Conference. Reston:AIAA, 2008.
[14] GRANTZ A. X-37B orbital test vehicle and derivatives[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA, 2011.
[15] JOHN T, JOSEF E, MARCUS HE, et al. SHEFEX Ⅱ vehicle and subsystem design, flight performance and their application to future hypersonic missions[C]//21st European Rocket and Balloon Programmes and Related. Thun:European Space Agency, 2013.
[16] 林旭斌, 张灿. 俄罗斯新型高超声速打击武器研究[J]. 战术导弹技术, 2019(1):19-24. LIN X B, ZHANG C. Research on new Russian hypersonic strike weapon[J]. Tactical Missile Technology, 2019(1):19-24(in Chinese).
[17] 宫朝霞, 李文杰. 美国NAI的高速与高超声速科技计划[J]. 飞航导弹, 2007(11):16-21. GONG C X, LI W J. The high-speed and hypersonic technology plan of the U.S. NAI[J]. Aerodynamic Missile Journal, 2007(11):16-21(in Chinese).
[18] 李海林, 吴德伟. 高超声速临近空间武器平台导航方案研究[J]. 飞航导弹, 2012(2):72-78,84. LI H L, WU D W. Research on navigation schemes of hypersonic vehicles in near space[J]. Aerodynamic Missile Journal, 2012(2):72-78,84(in Chinese).
[19] JASON S. DOD flies experimental hypersonic payload; claims success, technological advances[EB/OL]. InsideDefense.com (2017-09-02)[2019-11-01]. https://insidedefense.com/daily-news/dod-flies-experimental-hypersonic-payload-claims-success-technological-advances.
[20] 李凡, 熊家军, 张凯, 等. 临近空间高超声速目标跟踪动力学模型[J]. 宇航学报, 2019, 40(3):266-276. LI F, XIONG J J, ZHANG K, et al. Near space hypersonic target dynamics tracking model[J]. Journal of Astronautics, 2019, 40(3):266-276(in Chinese).
[21] RICHARD S. Navy pushes hypersonic weapon plan as putin boasts he already has them[EB/OL]. Military.com,(2018-12-28)[2019-11-01]. https://www.military.com/defensetech/2018/12/28/navy-pushes-hypersonic-weapon-plan-putin-boasts-he-already-has-them.html.
[22] 雷宏杰, 张亚崇. 机载惯性导航技术综述[J]. 航空精密制造技术, 2016, 52(1):7-12. LEI H J, ZHANG Y C. Review of airborne inertial navigation technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(1):7-12(in Chinese).
[23] 张伟, 张恒. 天文导航在航天工程应用中的若干问题及进展[J]. 深空探测学报, 2016(3):204-213. ZHANG W, ZHANG H. Research on problems of celestial navigation in space engineering[J]. Journal of Deep Space Exploration, 2016, 3(3):204-213(in Chinese).
[24] 全伟, 刘百奇, 宫晓琳, 等. 惯性、天文、卫星组合导航技术[M]. 北京:国防工业出版社, 2011:32-48. QUAN W, LIU B Q, GONG X L, et al. INS/CNS/GNSS integrated navigation technology[M]. Beijing:National Defense Industry Press, 2011:32-48(in Chinese).
[25] 卢欣, 李春艳, 李晓, 等. 星光导航技术现状与发展综述[J]. 空间控制技术与应用, 2017, 43(4):1-8. LU X, LI C H Y, LI X, et al. Current situation and development trends of starlight navigation technology[J]. Aerospace Control and Application, 2017, 43(4):1-8(in Chinese).
[26] ROBINSON E C, BASS J N, BHAVNANI K H, et al. Models of the near-space geophysical environment:PL-TR-97-2089[R]. Boston:Phillips Lab Hanscom AFB MA, 1997.
[27] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901-1913. SUN C Y, MU Z X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese).
[28] 程旋, 肖存英, 胡雄. 临近空间大气环境对高超声速飞行器气动特性的影响研究进展[J]. 飞航导弹, 2018(5):22-28. CHENG X, XIAO C Y, HU X. Research advance on the influence of near space atmosphere on the aerodynamic characteristics of hypersonic vehicles[J]. Aerodynamic Missile Journal, 2018(5):22-28(in Chinese).
[29] STEFFES S R. Real-time navigation algorithm for the SHEFEX-2 hybrid navigation system experiment[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2012.
[30] NILS N, MALAK S, MICHEAL C, et al. Attitude determination for the SHEFEX-2 mission using a low cost star tracker[C]//AIAA Guidance, Navigation, & Control Conference. Reston:AIAA, 2009.
[31] 闫杰, 于云峰, 凡永华, 等. 吸气式高超声速飞行器控制技术[M]. 西安:西北工业大学出版社, 2015:265-269. YAN J, YU Y F, FAN Y H, et al. Control technology of air-breathing hypersonic vehicle[M]. Xi'an:Northwestern Polytechnical University Press, 2005:265-269(in Chinese).
[32] SAMAAN M, THEIL S. Development of a low cost star tracker for the SHEFEX mission[J]. Aerospace Science and Technology, 2012, 23(1):469-478.
[33] 刘垒, 张路, 郑辛, 等. 星敏感器技术研究现状及发展趋势[J]. 红外与激光工程, 2007, 36(S2):529-533. LIU L, ZHANG L, ZHENG X, et al. Current situation and development trends of star sensor technology[J]. Infrared and Laser Engineering, 2007, 36(S2):529-533(in Chinese).
[34] 史少龙, 尹达一. CMOS APS噪声对星斑质心定位精度的影响[J]. 光电工程, 2013, 40(6):11-16. SHI S L, YIN D Y. CMOS APS noise effect on position accuracy of star tracker[J]. Opto-Electronic Engineering, 2013, 40(6):11-16(in Chinese).
[35] 万磊, 贾平, 张叶, 等. 飞行器姿态对CMOS航空相机成像的影响[J]. 光学精密工程, 2016, 24(1):203-209. WAN L, JIA P, ZHANG Y, et al. Effect of aircraft attitude on imaging of CMOS aerial cameras[J]. Optics and Precision Engineering, 2016, 24(1):203-209(in Chinese).
[36] 何家维, 何昕, 魏仲慧, 等. 高灵敏度EMCCD导航相机的设计[J]. 光学精密工程, 2018, 26(12):3019-3027. HE J W, HE X, WEI Z H, et al. Design of high-sensitivity EMCCD navigation camera[J]. Optics and Precision Engineering, 2018, 26(12):3019-3027(in Chinese).
[37] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学, 2016, 9(1):16-29. LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1):16-29(in Chinese).
[38] 魏合理, 陈秀红, 余凯, 等. 白天CCD观星可探测极限星等值分析[J]. 强激光与粒子束, 2007(2):187-192. WEI H L, CHEN X H, YU K, et al. Analysis of the detectable stellar magnitude limit using CCD camera in daytime sky background[J]. High Power Laser and Particle Beams, 2007(2):187-192(in Chinese).
[39] 韩艳丽, 郭晓军, 娄树理. 短波红外全天时自主天文导航技术展望[J]. 海军航空工程学院学报, 2013, 28(3):323-328. HAN Y L, GUO X J, LOU S L, et al. Prospect of the self-determination celestial navigation technology with daytime SWIR[J]. Journal of Naval Aeronautical and Astronautical, 2013, 28(3):323-328(in Chinese).
[40] 褚连胜, 郭阳宽, 王海军. 基于CMOS的星敏感器白天观星能力分析[J]. 北京信息科技大学学报(自然科学版), 2018, 33(1):23-26. CHU L SH, GUO Y K, WANG H J. Star detecting performance of CMOS star sensor in daytime[J]. Journal of Beijing Information Science & Technology University, 2018, 33(1):23-26(in Chinese).
[41] 于春蕾, 李雪, 邵秀梅, 等. 短波红外InGaAs焦平面噪声特性[J]. 红外与毫米波学报, 2019, 38(4):528-534. YU C L, LI X, SHAO X M, et al. Noise characteristics of short wave infrared InGaAs focal plane arrays[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4):528-534(in Chinese).
[42] LIEBE C C. Accuracy performance of star trackers-a tutorial[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2):587-599.
[43] JUMPER E J, GORDEYEV S. Physics and measurement of aero-optical effects:Past and present[J]. Annual Review of Fluid Mechanics, 2017, 49(1):419-441.
[44] PETER O, DONALD S, DANIEL M. The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization[C]//16th AIAA/DLR/DGLR International Space and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2009.
[45] 杨文霞, 蔡超, 丁明跃, 等. 超音速/高超音速飞行器湍流流场气动光学效应分析[J]. 光电工程, 2009, 36(1):88-92. YANG W X, CAI C, DING M Y, et al. Numerical analysis of aero-optic effects induced by the turbulence flow field surrounding super/hypersonic[J]. Opto-Electronic Engineering, 2009, 36(1):88-92(in Chinese).
[46] 王乃祥, 徐钰蕾, 惠守文, 等. 高马赫航空遥感器光学窗口的光机热分析[J]. 长春理工大学学报(自然科学版), 2014, 37(3):5-8. WANG N X, XU Y L, HUI S W, et al. Optical/structural/thermal analysis of optical window of high-maher airborne remote sensor[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(3):5-8(in Chinese).
[47] 石进峰, 吴清文, 张建萍, 等. 高空高速航空相机光学窗口的热光学分析[J]. 光学学报, 2012, 32(4):235-243. SHI J F, WU Q W, ZHANG J P, et al. Thermal-optical analysis for optical window of high-altitude and high-speed aerial camera[J]. Acta Optica Sinica, 2012, 32(4):235-243(in Chinese).
[48] 韩炜, 赵跃进, 胡新奇, 等. 超高声速飞行器光学窗口气动光学效应分析[J]. 光学技术, 2010, 36(4):622-626. HAN W, ZHAO Y J, HU X Q, et al. Study on aero-optical effects of hypersonic vehicle's optical window[J]. Optical Technique, 2010, 36(4):622-626(in Chinese).
[49] WANG M, MANI A, GORDEYEV S. Physics and computation of aero-optics[J]. Annual Review of Fluid Mechanics, 2012, 44(1):299-321.
[50] 熊晓月, 费锦东, 陈澄, 等. 气动光学效应内涵及其对成像探测的影响机理[J]. 现代防御技术, 2017(3):139-146. XIONG X Y, FEI J D, CHEN C, et al. Connotation of aero-optical effect and its influence mechanism on imaging detection[J]. Modern Defence Technology, 2017(3):139-146(in Chinese).
[51] 吴德伟, 景井, 李海林. 临近空间环境对高超声速飞行器导航系统的影响分析[J]. 飞航导弹, 2012(12):73-80. WU D W, JING J, LI H L. Influence analysis of near space environment on hypersonic vehicle navigation system[J]. Aerodynamic Missile Journal, 2012(12):73-80(in Chinese).
[52] 易仕和, 陈植, 朱杨柱, 等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1):98-119. YI S H, CHEN Z, ZHU Y Z, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):98-119(in Chinese).
[53] WANG M, MANI A, GORDEYEV S. Physics and computation of aero-optics[J]. Annual Review of Fluid Mechanics, 2012, 44(1):299-321.
[54] SALOMON P M. Charge-coupled device (CCD) trackers for high-accuracy guidance applications[J]. Optical Engineering, 1982, 20(1):135-142.
[55] 张广军. 星图识别[M]. 北京:国防工业出版社, 2011:12-21. ZHANG G J. Star identification[M]. Beijing:National Defense Industry Press, 2011:12-21(in Chinese).
[56] 曾芬, 刘金国, 左洋, 等. 基于多视场星敏感器的姿态确定方法[J]. 计算机测量与控制, 2015, 23(2):548-550. ZENG F, LIU J G, ZUO Y, et al. Attitude determination method of star sensor based on multiple fields of view[J]. Computer Measurement & Control, 2015, 23(02):548-550(in Chinese).
[57] 詹银虎, 郑勇, 张超, 等. 超大视场太阳敏感器图像质心提取算法[J]. 测绘学报, 2015,44(10):1078-1084. ZHAN Y H, ZHENG Y, ZHANG C, et al. Image centroid algorithms for sun sensors with super wide field of view[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(10):1078-1084(in Chinese).
[58] 李崇辉. 基于鱼眼相机的舰船天文导航技术研究[D]. 郑州:解放军信息工程大学, 2013:92-122. LI C H. Research on marine celestial navigation based on fisheye camera[D]. Zheng Zhou:PLA Information Engineering University, 2013:92-122(in Chinese).
[59] 房建成, 宁晓琳, 刘劲. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社, 2017:151-155. FANG J C, NING X L, LIU J. Principles and methods of spacecraft celestial navigation[M]. Beijing:National Defense Industry Press, 2017:151-155(in Chinese).
[60] LIEBE C C, GROMOV K, MELLER D M. Toward a stellar gyroscope for spacecraft attitude determination[J]. Journal of Guidance Control & Dynamics, 2004, 27(1):91-99.
[61] KOLOMENKIN M, POLLAK S, SHIMSHONI I, et al. Geometric voting algorithm for star trackers[J]. IEEE Transactions on Aerospace & Electronic Systems, 2008, 44(2):441-456.
[62] SCHMIDT U. Astro APS-The next generation Hi-Rel Star tracker based on active pixel sensor technology[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
[63] KATAKE A B. Modeling, image processing and attitude estimation of high speed star sensors[D]. College Station:Texas A&M University, 2006:22-32.
[64] STEFFES S R, SAMAAN M A, THEIL S. Alignment between IMU and star tracker using the night sky and an on-board navigation system[J]. Advances in the Astronautical Sciences, 2012, 144:173-186.
[65] 钟红军, 杨孟飞, 卢欣. 星敏感器标定方法研究[J]. 光学学报, 2010, 30(5):1343-1348. ZHONG H J, YANG M F, LU X. Calibration method of star sensor[J]. Acta Optica Sinica, 2010, 30(5):1343-1348(in Chinese).
[66] VEDDER J D. Star trackers, star catalogs, and attitude determination-Probabilistic aspects of system design[J]. Journal of Guidance Control & Dynamics, 1992, 16(3):498-504.
[67] 崔祥祥, 王宏力, 陆敬辉, 等. 适用于小视场星敏感器的导航星表构建方法[J]. 红外与激光工程, 2015, 44(4):1249-1253. CUI X X, WANG H L, LU J H, et al. Guide star selection method for star tracker with thin field of view[J]. Infrared and Laser Engineering, 2015, 44(4):1249-1253(in Chinese).
[68] 叶志龙, 孙朔冬, 陈纾, 等. 一种基于恒星分布的星敏感器导航星库制作方法[J]. 深空探测学报, 2018, 5(1):90-96. YE ZH L, SUN S D, CHEN S, et al. Establishment of a navigation star database on star distribution[J]. Journal of Deep Space Exploration, 2018, 5(1):90-96(in Chinese).
[69] 朱海龙, 梁斌, 张涛. 基于局部敏感哈希的导航星库快速搜索算法[J]. 西北工业大学学报, 2018, 36(5):988-994. ZHU H L, LIANG B, ZHANG T. Fast access for star catalog based on locality-sensitive hashing[J]. Journal of Northwestern Polytechnical University, 2018, 36(5):988-994(in Chinese).
[70] 刘炳琪, 魏诗卉, 苏国华, 等. 中远程导弹惯性/星光组合导航关键技术及研究现状[J]. 系统工程理论与实践, 2019, 39(5):1351-1362. LIU B Q, WEI S H, SU G H, et al. Key techniques and current research status of INS/CNS integrated navigation on intermediate-range missile[J]. Systems Engineering-Theory & Practice, 2019, 39(5):1351-1362(in Chinese).
[71] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
[72] 徐世南, 吴催生. 高超声速飞行器热力环境数值仿真研究综述[J]. 飞航导弹, 2019(7):26-30. XU S N, WU C S. Review on numerical simulation of hypersonic vehicle thermal environment[J].Aerodynamic Missile Journal, 2019(7):26-30(in Chinese).
[73] 谭威. 星敏感器光学系统的温度分布及其对像面位移的影响研究[D]. 长沙:国防科学技术大学, 2008:26-54. TAN W. The study of temperature distribution and its effects on image shifting of the star sensor optics system[D]. Changsha:National University of Defense Technology, 2008:26-54(in Chinese).
[74] 程伟宁. 宽谱段宽视场星敏感器光学系统设计[D]. 哈尔滨:哈尔滨工业大学, 2009:33-37. CHENG W N. Optical system design of a star sensor with wide spectrum and wide field of view[D]. Harbin:Harbin Institute of Technology, 2009:33-37(in Chinese).
[75] 姜笛, 张科, DEBEIR O. 基于最优路径的多视场全天自主星图识别[J]. 系统工程与电子技术, 2019, 41(1):148-153. JIANG D, ZHANG K, DEBEIR O. All-sky autonomous star recognition for multi-FOV star sensors based on optimal path[J]. Systems Engineering and Electronics, 2019, 41(1):148-153(in Chinese).
[76] 陆壮志, 周鑫, 万志江, 等. 应用形状因子特征的高效星图识别[J]. 应用光学, 2018, 39(3):349-354. LU Z Z, ZHOU X, WAN Z J, et al. Efficient star identification algorithm based on shape factor features[J]. Journal of Applied Optics, 2018, 39(3):349-354(in Chinese).
[77] 王军, 何昕, 魏仲慧, 等. 基于多特征匹配的快速星图识别[J]. 光学精密工程, 2019, 27(8):1870-1879. WANG J, HE X, WEI Z H, et al. Fast star identification algorithm based on multi-feature matching[J]. Optics and Precision Engineering, 2019, 27(8):1870-1879(in Chinese).
[78] 王宏力, 陆敬辉, 崔祥祥. 大视场星敏感器星光制导技术及应用[M]. 北京:国防工业出版社, 2015:6-8. WANG H L, LU J H, CUI X X. Starlight guidance technology and application of wide VOF star sensor[M]. Beijing:National Defense Industry Press, 2015:6-8(in Chinese).
[79] YING D, FEI X, ZHENG Y. An APS-based autonomous star tracker[C]//Advanced Materials and Devices for Sensing and Imaging Ⅱ. Beiing:International Society for Optics and Photonics, 2005.
[80] 杜康, 刘春雨, 谢运强,等. 基于非球面的大相对孔径微型星敏感器镜头设计[J]. 仪器仪表学报, 2019, 40(6):96-103. DU K, LIU C Y, XIE Y Q, et al. Lens design of micro star sensor with large aperture based on aspheric surface[J]. Chinese Journal of Scientific Instrument, 2019, 40(6):96-103(in Chinese).
[81] 苏畅. 星敏感器星图降噪预处理及其硬件实现[D]. 哈尔滨:哈尔滨工业大学, 2017:1-4. SU C. Pre-processing of star sensor image denoising and hardware implementation[D]. Harbin:Harbin Institute of Technology, 2017:1-4(in Chinese).
[82] 孙鹏, 赵欣, 刘伟, 等. 一体化星敏感器温度控制措施及试验验证[J]. 航天器工程, 2018, 27(2):119-123. SUN P, ZHAO X, LIU W, et al. Temperature control method and test verification for integrated star sensor[J]. Spacecraft Engineering, 2018, 27(2):119-123(in Chinese).
文章导航

/