流体力学与飞行力学

针栓式喷注单元雾化角模型分析

  • 王凯 ,
  • 雷凡培 ,
  • 张波涛 ,
  • 杨岸龙 ,
  • 周立新
展开
  • 1. 西安航天动力研究所 液体火箭发动机技术重点实验室, 西安 710100;
    2. 中国船舶工业集团有限公司, 北京 100044

收稿日期: 2019-11-04

  修回日期: 2020-01-19

  网络出版日期: 2020-01-16

基金资助

国家自然科学基金(11502186)

Analysis on spray angle model for pintle injector element

  • WANG Kai ,
  • LEI Fanpei ,
  • ZHANG Botao ,
  • YANG Anlong ,
  • ZHOU Lixin
Expand
  • 1. Key Laboratory for Liquid Rocket Engine Technology, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
    2. China State Shipbuilding Corporation Limited, Beijing 100044, China

Received date: 2019-11-04

  Revised date: 2020-01-19

  Online published: 2020-01-16

Supported by

National Natural Science Foundation of China (11502186)

摘要

为了实现不同径向孔形的针栓式喷注器雾化角的准确预测,从动量守恒方程出发建立了液膜撞击液膜和液膜撞击液束的雾化角理论修正模型。对于液膜撞击液膜的喷注单元,模型中通过理论推导引入了2个变形因子,将撞击的几何变形效应与雾化角关联;对于液膜撞击液束,通过引入阻塞率定义有效撞击动量比,同时将液束入口孔形的影响隐含考虑在变形因子中,最后根据高速摄影试验结果和数值仿真结果获得了对应的变形因子组合系数,使得新的雾化角模型适应性更广、准确性更高。结果表明:引入变形因子和阻塞率的理论模型预测值与试验及数值仿真结果吻合很好;对于液膜撞击液膜,变形因子基本维持在0.9~1.1,根据试验结果及仿真结果,变形因子推荐值为C1=0.99和C2=1.06;对于液膜撞击液束,变形因子推荐值为C1=0.75和C2=1.25。该模型根据实际出口的轴向动量和合成总动量计算雾化角,隐含考虑了撞击作用造成的影响,较根据撞击前入口的轴向动量和合成总动量计算雾化角的常用模型预测值准确度显著提高,为针栓式喷注器的理论研究和工程设计提供了重要参考。

本文引用格式

王凯 , 雷凡培 , 张波涛 , 杨岸龙 , 周立新 . 针栓式喷注单元雾化角模型分析[J]. 航空学报, 2020 , 41(10) : 123622 -123622 . DOI: 10.7527/S1000-6893.2019.23622

Abstract

In order to accurately predict the spray angle of pintle injector of different radial orifice shapes, the theoretical models of the spray angles of one liquid sheet impinging on another liquid sheet and a liquid sheet impinging on a liquid jet are modified based on the momentum conservation equation. For the injection unit of one liquid sheet impacting another liquid sheet, two deformation factors are introduced in the model by theoretical derivation, which associates the geometric deformation effect of the impact with spray angle. For a liquid sheet impact a liquid jet, the effective impinging momentum ratio is defined by introducing the blocking rate. At the same time, the influence of the inlet hole shape of the liquid jet is implicitly considered in the deformation factors. Finally, according to the results of high-speed photography test and the numerical simulation results, the corresponding combination coefficients of deformation factors are obtained, which makes the new spray angle model more adaptable and more accurate than the original model. The results show that the predicted values of the theoretical model with the introduction of deformation factors and blocking rate are in good agreement with the experimental and numerical simulation results. For one liquid sheet impinging on another liquid sheet, the deformation factors are basically maintained at 0.9~1.1, and the recommended values of the deformation factors are C1=0.99 and C2=1.06, according to the experimental results and simulation results. For a liquid sheet impinging on a liquid jet, the recommended values of the deformation factor are C1=0.75 and C2=1.25. This model calculates the spray angle according to the actual axial momentum and the actual synthetic total momentum at the exit, which implicitly considers the influence of the impact effect. Compared with the common model that calculates the spray angle based on the axial momentum and the synthetic total momentum at the entrance before the impact, the accuracy of the new model is significantly improved, which provides an important reference for the theoretical research and engineering design of pintle injectors.

参考文献

[1] 岳春国, 李进贤, 侯晓, 等. 变推力液体火箭发动机综述[J].中国科学E辑:技术科学, 2009, 39(3):464-468. YUE C G, LI J X, HOU X, et al. Summarization on variable liquid thrust rocket engines[J].Science in China Series E:Technological Sciences, 2009, 39(3):464-468(in Chinese).
[2] 袁宇. 猎鹰火箭发动机设计特点[J].太空探索, 2017(7):19-20. YUAN Y. Design features of falcon rocket engine[J].Space Exploration, 2017(7):19-20(in Chinese).
[3] 安鹏, 姚世强, 王京丽, 等. 针栓式喷注器的特点及设计方法[J].导弹与航天运载技术, 2016(3):50-54. AN P, YAO S Q, WANG J L, et al. Characteristics and design of pintle injector[J].Missiles and Space Vehicles, 2016(3):50-54(in Chinese).
[4] DRESSLER G A. Summary of deep throttling rocket engines with emphasis on apollo lmde:AIAA-2006-5220[R]. Reston:AIAA, 2006.
[5] ELVERUM G W, STAUDHAMMER P, MILLER J, et al. The descent engine for the lunar module:AIAA-1967-0521[R]. Reston:AIAA, 1967.
[6] GILROY R, SACKHEIM R. The lunar module descent engine-A historical summary:AIAA-1989-2385[R]. Reston:AIAA, 1989.
[7] CHIANESE S G, MAJAMAKI A N, GAVITT K R. NGST TR202 throttling lunar descent pintle engine[C]//Proceedings of the 54th JANNAF Joint Propulsion Meeting, 2007.
[8] MAJAMAKI A N, CHIANESE S G, KIM T S. TR202 deep throttling lunar descent engine pintle injector technology development status[C]//Proceedings of the 55th JANNAF Joint Propulsion Meeting, 2008.
[9] MUELIER T, DRESSIER G. TRW 40 klbf LOX/RP-1 low cost pintle engine test results:AIAA-2000-3863[R]. Reston:AIAA, 2000.
[10] BEDARD M J, FELDMAN T W, RETTENMAIER A, et al. Student design/build/test of a throttleable LOX-LCH4 thrust chamber:AIAA-2012-3883[R]. Reston:AIAA, 2012.
[11] BEDARD M J, FELDMAN T, RETTENMAIER A, et al. Student design/build/test of a throttleable LOX/LCH4 thrust chamber:AIAA-2012-3883[R]. Reston:AIAA, 2012.
[12] GROMSKI J M, MAJAMAKI A N, CHIANESE S G, et al. Northrop Grumman TR202 LOX/LH2 deep throttling engine technology project status:AIAA-2010-6725[R]. Reston:AIAA, 2010.
[13] CHIANESE S G, GROMSKI J M, WEINSTOCK V, et al. Northrop Grumman TR202 LOX-GH2 deep throttling pintle injector performance stability and heat transfer measurements[C]//Proceedings of the 57th JANNAF Joint Propulsion Meeting, 2010.
[14] GAVITT K, MUELLER T, WONG T, et al. TRW LCPE 650 klbf LOX/LH2 test results:AIAA-2000-3853[R]. Reston:AIAA, 2000.
[15] GAVITT K R, MUELLER T J. Testing of the 650 klbf LOX/LH2 low cost pintle engine (LCPE):AIAA-2001-3987[R]. Reston:AIAA, 2001.
[16] 王福民, 旷武岳. 美国太空探索技术公司(SpaceX)及其"猎鹰"系列运载火箭[R]. 西安:西安航天动力研究所, 2012. WANG F M, KUANG W Y. SpaceX and its falcon series of launch vehicles[R]. Xi'an:Xi'an Aerospace Propulsion Institute, 2012(in Chinese).
[17] 张雪松. 猎鹰火箭的基础:不断升级的梅林发动机[J].卫星与网络, 2017(6):40-41. ZHANG X S. Foundation of falcon rocket:Upgrading merlin engine[J].Satellite and Network, 2017(6):40-41(in Chinese).
[18] 刘昌波, 兰晓辉, 李福云. 载人登月舱下降发动机技木研究[J].火箭推进, 2011, 37(2):8-13. LIU C B, LAN X H, LI F Y. Conceptual schemes of china lunar excursion module descent engine[J].Journal of Rocket Propulsion, 2011, 37(2):8-13(in Chinese).
[19] HEISTER S D. Pintle injectors,handbook of atomization and sprays:Theory and applications[M]. New York:Springer, 2011:647-655.
[20] BOETTCHER P A, DAMAZO J S, SHEPHERD J E, et al. Visualization of transverse annular jets[C]//62nd Annual Meeting of the APS Division of Fluid Dynamic. College Park:American Physical Society, 2009.
[21] FANG X X, SHEN C B. Study on atomization and combustion characteristics of LOX/Methane pintle injectors[J].Acta Astronautica, 2017, 136:369-379.
[22] 方昕昕. 液氧/甲烷针栓式喷注器雾化及燃烧特性研究[D]. 长沙:国防科技大学, 2015:11. FANG X X. Study on the atomization and combustion characteristics of lox/methane pintle injectors[D]. Changsha:National University of Defense Technology, 2015:11(in Chinese).
[23] SANTORO R J, MERKLE C L. Main chamber and preburner injector technology:NCC 8-46[R]. Washington, D.C.:NASA, 1999.
[24] SAKAKI K, KAKUDO H, NAKAYA S, et al. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J].Journal of Propulsion and Power, 2017, 33(2):514-521.
[25] YU K, SON M, KOO J. Effects of opening distance on liquid-gas spray of pintle injector under atmospheric condition[J].Journal of the Korean Society for Aeronautical and Space Sciences, 2015, 43(7):585-592.
[26] SON M, YU K, RADHAKRISHNAN K, et al. Verification on spray simulation of a pintle injector for liquid rocket engine[J].Journal of Thermal Science, 2016, 25(1):90-96.
[27] SON M, YU K, KOO J, et al. Injection condition effects of a pintle injector for liquid rocket engines on atomization performances[J].Journal of ILASS-Korea, 2015, 20(5):114-120.
[28] SON M, YU K, KOO J, et al. Effects of momentum ratio and weber number on spray half angles of liquid controlled pintle injector[J].Journal of Thermal Science, 2015, 24(1):37-43.
[29] RADHAKRISHNAN K, SON M, LEE K, et al. Effect of injection conditions on mixing performance of pintle injector for liquid rocket engine[J].Acta Astronautica, 2018, 150:105-116.
[30] CHENG P, LI Q L, XU S, et al. On the prediction of spray angle of liquid-liquid pintle injectors[J].Acta Astronautica, 2017, 138:145-151.
[31] SAKAKI K, KAKUDO H, NAKAYA S, et al. Optical measurements of ethanol/liquid oxygen rocket engine combustor with planar pintle injector:AIAA-2015-3845[R]. Reston:AIAA, 2015.
[32] SAKAKI K, KAKUDO H, NAKAYA S, et al. Performance evaluation of rocket engine combustors using ethanol/liquid oxygen pintle injector:AIAA-2016-5080[R]. Reston:AIAA, 2016.
[33] 王凯, 雷凡培, 李鹏飞, 等. 壁面边界对撞击合成动量角的影响研究[J].推进技术, 2019, 40(10):2288-2295. WANG K, LEI F P, LI P F, et al. Effects of wall boundary on the resultant momentum angle of impinging jets[J].Journal of Propulsion Technology, 2019, 40(10):2288-2295(in Chinese).
[34] FUSTER D, BAGUÉ A, POPINET S, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[J].International Journal of Multiphase Flow, 2009, 35(6):550-565.
[35] POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J].Journal of Computational Physics, 2009, 228(16):5838-5866.
[36] 王凯, 李鹏飞, 杨国华. 相邻离心式喷嘴液膜撞击雾化过程仿真[J].推进技术, 2017, 38(2):408-415. WANG K, LI P F, YANG G H, et al. Simulation on liquid films impact atomization process of adjacent pressure swirl injectors[J].Journal of Propulsion Technology, 2017, 38(2):408-415(in Chinese).
[37] 杨国华, 王凯, 张民庆, 等. 基于树形自适应网格的旋流液膜雾化过程仿真[J].推进技术, 2018, 39(3):556-564. YANG G H, WANG K, ZHANG M Q, et al. Simulation on swirl liquid sheet spray process based on an octree adaptive mesh refinement[J].Journal of Propulsion Technology, 2018, 39(3):556-564(in Chinese).
[38] 王凯, 杨国华, 李鹏飞. 基于Gerris的离心式喷嘴锥形液膜破碎过程数值模拟[J].推进技术, 2018, 39(5):1041-1050. WANG K, YANG G H, LI P F, et al. Numerical simulation on conical liquid sheet breakup process of pressure swirl injector based on Gerris[J].Journal of Propulsion Technology, 2018, 39(5):1041-1050(in Chinese).
[39] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computation fluid dynamics[J].Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[40] 王凯, 杨国华, 李鹏飞, 等. 离心式喷嘴内部流动过程数值仿真分析[J].火箭推进, 2016, 42(4):14-20. WANG K, YANG G H, LI P F, et al. Numerical simulation of internal flow process in pressure swirl injector[J].Journal of Rocket Propulsion, 2016, 42(4):14-20(in Chinese).
[41] 薛帅杰, 刘红军, 洪流, 等. 厚液膜敞口型离心喷嘴自激振荡特性试验[J].航空学报, 2018, 39(9):122189. XUE S J, LIU H J, HONG L, et al. Test on self-excited oscillation characteristics of an open-end swirl injector with thick liquid film[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122189(in Chinese).
[42] 薛帅杰, 刘红军, 陈鹏飞, 等. 注气离心喷嘴喷注过程稳定性试验[J].航空学报, 2019, 40(7):122697. XUE S J, LIU H J, CHEN P F, et al. Test on spray stability of swirl injector with gas injection[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122697(in Chinese).
文章导航

/