[1] 吴显亮, 石宗英, 钟宜生. 无人机视觉导航研究综述[J]. 系统仿真学报, 2010, 22(S1):62-65. WU X L, SHI Z Y, ZHONG Y S. Review of UAV visual navigation research[J]. Journal of System Simulation, 2010, 22(S1):62-65(in Chinese).
[2] HOW J P, BEHIHKE B, FRANK A, et al. Real-time indoor autonomous vehicle test environment[J]. IEEE Control Systems, 2008, 28(2):51-64.
[3] BACHRACH A, PRENTICE S, HE R, et al. RANGE-Robust autonomous navigation in GPS-denied environments[J]. Journal of Field Robotics, 2011, 28(5):644-666.
[4] TOURNIER G, VALENTI M, HOW J, et al. Estimation and control of a quadrotor vehicle using monocular vision and moire patterns[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2006:21-24.
[5] RONDON E, GARCIA-CARRILLO L R, FANTONI I. Vision-based altitude, position and speed regulation of a quadrotor rotorcraft[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010:628-633.
[6] BAZIN J C, KWEON I, DEMONCEAUX C, et al. UAV attitude estimation by vanishing points in catadioptric images[C]//2008 IEEE International Conference on Robotics and Automation, 2008:2743-2749.
[7] KANADE T, AMIDI O, KE Q. Real-time and 3D vision for autonomous small and micro air vehicles[C]//43rd IEEE Conference on Decision and Control, 2014, 2:1655-1662.
[8] 童丸丸. 用于UAV导航的合成视觉方法[D]. 杭州:浙江大学, 2010. TONG W W. Synthetic vision method for UAV navigation[D]. Hangzhou:Zhejiang University, 2010(in Chinese).
[9] STOWERS J, BAINBRIDGE-SMITH A, HAYES M, et al. Optical flow for heading estimation of a quadrotor helicopter[J]. International Journal of Micro Air Vehicles, 2009, 1(4):229-239.
[10] VERVELD M J, CHU Q P, WAGTER C D, et al. Optic flow based state estimation for an indoor micro air vehicle[M]. 2012.
[11] SOBERS D, CHOWDHARY G, JOHNSON E N. Indoor navigation for unmanned aerial vehicles[M]. 2009.
[12] SALAZAR S, ROMERO H, GOMEZ J, et al. Real-time stereo visual servoing control of an UAV having eight-rotors[C]//20096th International Conference on Electrical Engineering, Computing Science and Automatic Control, 2009:1-11.
[13] YU H, BEARD R, BYME J. Vision-based navigation frame mapping and planning for collision avoidance for miniature air vehicles[J]. Control Engineering Practice, 2012, 18(7):824-836.
[14] AHRENS S, LEVINE D, ANDREWS G, et al. Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments[C]//2009 IEEE International Conference on Robotics and Automation, 2009:2643-2648.
[15] CHITRAKARAN V K, DAWSON D M, CHEN J, et al. Vision Assisted Autonomous Landing of an Unmanned Aerial Vehicle[C]//44th IEEE Conference on Decision and Control, 2005:1465-1470.
[16] BILLS C, CHEN J, SAXENA A. Autonomous MAV flight in indoor environments using single image perspective cues[C]//2012 IEEE international conference on Robotics and automation (ICRA), 2012:5776-5783.
[17] GREEN W E, OH P Y, BARROWS G. Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments[C]//2014 IEEE International Conference on Robotics and Automation, 2014, 3:2347-2352.
[18] SUN S L, DENG Z L. Multi-sensor optimal information fusion Kalman filter[J]. Automatica, 2014, 40(6):1017-1023.
[19] SUN S. Multi-sensor optimal information fusion Kalman filters with applications[J]. Aerospace Science and Technology, 2004, 8(1):57-62.
[20] OLFATI-SABER R. Distributed Kalman filtering for sensor networks[C]//200746th IEEE Conference on Decision and Control, 2007:5492-5498.
[21] OLFATI-SABER R, JALALKAMALI P. Collaborative target tracking using distributed Kalman filtering on mobile sensor networks[C]//2011 American Control Conference, 2011:1100-1105.
[22] 黄小平,王岩,缪鹏程. 粒子滤波原理及应用[M]. 北京:电子工业出版社, 2017, 40. HUANG X P, WANG Y, MIAO P C. Particle filtering principle and application[M]. Beijing:Electronic Industry Press, 2017, 40(in Chinese).
[23] 王尔申.基于广义回归神经网络的粒子滤波算法研究[J]. 沈阳航空航天大学学报,2014,31(6):54-58. WANG E S. Research on particle filter algorithm based on generalized regression neural network[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2014, 31(6):54-58(in Chinese).
[24] 刘金琨.RBF神经网络自适应控制[M]. 北京:清华大学出版社,2014:1. LIU J K. RBF neural network adaptive control[M]. Beijing:Tsinghua University Press, 2014:1(in Chinese).
[25] 王尔申, 李兴凯, 张芝贤, 等. 基于广义回归神经网络的粒子滤波算法研究[J]. 沈阳航空航天大学学报,2014,31(6):54-58. WANG E S, LI X K, ZHANG Z X, et al. Research on particle filter algorithm based on generalized regression neural network[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2014, 31(6):54-58(in Chinese).
[26] WANG X, JIANG A G, WANG S. Distributed sensor networks for multi-sensor data fusion in intelligent maintenance[C]//3rd International Symposium on Instrumentation Science and Technology, 2004:587-592.
[27] WANG F, CUI J Q, CHEN B M, et al. A comprehensive UAV indoor navigation system based on vision optical flow and laser FastSLAM[J]. Acta Automatica Sinica, 2013, 39(11):1889-1899.
[28] 杭义军,刘建业,李荣冰,等. 基于混合特征匹配的微惯性/激光雷达组合导航方法[J]. 航空学报, 2014, 35(9):2583-2592. HANG Y J, LIU J Y, LI R B, et al. MEMS IMU/LADAR integrated navigation method based on mixed feature match[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2583-2592(in Chinese).
[29] KONG T H, FANG Z, LI P. Indoor integrated navigation of micro aerial vehicle based on radar-scanner and inertial navigation system[J]. Control Theory & Applications, 2014, 31(5):607-613.
[30] BAR-SHALOM Y. On the track-to-track correlation problem[J]. IEEE Transactions on Automatic Control, 1981, 26(2):571-572.
[31] CARLSON N A. Federated square root filter for decentralized parallel processors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3):517-525.
[32] ABDULHAFIZ W A, KHAMIS A. Bayesian approach to multisensor data fusion with pre-and post-filtering[C]//201310th IEEE International Conference on Networking, Sensing and Control (ICNSC), 2013:373-378.
[33] CHEN Z, CAI Y. Fata fusion algorithm for multi-sensor dynamic system based on interacting multiple model[J]. Journal of Shanghai Jiaotong University (Science), 2015, 20(3):265-272.