[1] RASEK G A, SCHRODER A, TOBOLA P, et al. HIRF transfer function observations:Notes on results versus requirements and certification approach[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(2):195-202.
[2] 李婵虓, 余占清, 曾嵘, 等. 冲击电场作用下屏蔽体屏蔽效能实验研究[J]. 高电压技术, 2014, 40(9):2849-2854. LI C X, YU Z Q, ZENG R, et al. Experimental study on shielding effectiveness of shielded body under impulse electric field[J]. High Voltage Technology, 2014, 40(9):2849-2854(in Chinese).
[3] 魏嘉利, 贾云峰, 谢树果, 等. 航空电子系统电磁环境复杂度量化评估方法[J].航空学报, 2014, 35(2):487-496. WEI J L, JIA Y F, XIE S G, et al. Evaluation method for complex measurement of electromagnetic environment in avionics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):487-496(in Chinese).
[4] SAE International. Guide to certification of aircraft in a high intensity radiated field (HIRF) environment:SAE ARP 5583A[S]. Washington D.C.:SAE International, 2003.
[5] 石丹. 平面波斜入射到有孔腔体的屏蔽效能分析[J].电波科学学报, 2011, 26(4):678-682. SHI D. Analysis of shielding effectiveness of plane wave oblique incident on porous cavity[J]. Journal of Radio Science, 2011, 26(4):678-682(in Chinese).
[6] ROBINSON M P, BENSON T M, CHRISTOPOULOS C, et al. Effect of logic family on radiated emissions from digital circuits[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(3):288-293.
[7] 张亚普, 达新宇, 谢铁城. 混合孔缝箱体屏蔽效能电磁拓扑分析方法[J]. 高电压技术, 2014, 40(9):2833-2841. ZHANG Y P, DA X Y, XIE T C. Method of electromagnetic topology analysis for shielding efficiency of mixed hole slot box[J]. High Voltage Technology, 2014, 40(9):2833-2841(in Chinese).
[8] 阚勇, 闫丽萍, 赵翔, 等. 基于电磁拓扑的多腔体屏蔽效能快速算法[J]. 物理学报, 2016, 65(3):88-99. KAN Y, YAN L P, ZHAO X, et al. A fast algorithm for multi-cavity shielding effectiveness based on electromagnetic topology[J]. Journal of Physics, 2016, 65(3):88-99(in Chinese).
[9] 汪柳平, 高攸纲, 沈远茂, 等. 装有PCB有孔矩形腔屏蔽效能的传输线法分析[J]. 电波科学学报, 2008, 23(4):740-744. WANG L P, GAO Y G, SHEN Y M, et al. Transmission line analysis of shielding effectiveness of rectangular cavity with PCB[J]. Journal of Radio Science, 2008, 23(4):740-744(in Chinese).
[10] 郝建红, 公延飞, 蒋璐行, 等. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究[J]. 电工技术学报, 2018, 33(3):670-679. HAO J H, GONG Y F, JIANG L X, et al. Analytical study on shielding effectiveness of complex multi-cavity electromagnetic crosstalk on built-in circuit board[J]. Journal of Electrotechnical Technology, 2018, 33(3):670-679(in Chinese).
[11] 罗静雯, 杜平安, 任丹. 一种基于BLT方程的孔缝箱体屏蔽效能计算方法[J]. 物理学报, 2014, 64(1):62-69. LUO J W, DU P A, REN D. A method for calculating the shielding efficiency of hole slot box based on BLT equation[J]. Journal of Physics, 2014, 64(1):62-69(in Chinese).
[12] 李新峰, 魏光辉, 汪连栋. 含短贯通导体的金属腔体电磁辐射耦合规律[J]. 高电压技术, 2016, 42(3):987-993. LI X F, WEI G H, WANG L D. The law of electromagnetic radiation coupling of metal cavity containing short through conductor[J]. High Voltage Technology, 2016, 42(3):987-993(in Chinese).
[13] 何鸣, 刘光斌, 胡延安, 等. 孔缝对导弹电子设备机箱电磁屏蔽效能的影响[J]. 宇航学报, 2006(2):262-267. HE M, LIU G B, HU Y A, et al. The effect of the hole seam on the electromagnetic shielding effectiveness of the case of the missile electronic equipment[J]. Journal of Astronautics, 2006(2):262-267(in Chinese).
[14] GAO Y H, GU J J, YANG K Y, et al. Analysis on the shielding effectiveness of metallic box with apertures based on FDTD[J]. Applied Mechanics and Materials, 2013, 21(10):239-240.
[15] 魏光辉, 李凯, 潘晓东, 等. 含孔缝金属腔体电磁场增强效应的形成机理仿真[J]. 高电压技术, 2014, 40(6):1637-1643. WEI G H, LI K, PAN X D, et al. Simulation of formation mechanism of electromagnetic field enhancement effect of metal cavity with slit[J]. High Voltage Technology, 2014, 40(6):1637-1643(in Chinese).
[16] 彭强, 周东方, 侯德亭, 等. 带缝隙矩形腔的屏蔽效能传输线法修正及扩展分析[J]. 强激光与粒子束, 2013, 25(9):2355-2362. PENG Q, ZHOU D F, HOU D T, et al. Modification and extension analysis of transmission line method for shielding effectiveness of rectangular cavity with slot[J]. Intense Laser and Particle Beam, 2013, 25(9):2355-2362(in Chinese).
[17] 吉奉公. 小型机箱屏蔽效能测试技术研究[D]. 南京:东南大学, 2016. JI F G. Research on shielding effectiveness of small-sized chassis[D]. Nanjing:Southeast University, 2016(in Chinese).
[18] HOLLOWAY C L, LADBURRY J, CODER J, et al. Measuring the shielding effectiveness of small enclosures/cavities with a reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. Piscataway:IEEE Press, 2007:1-5.
[19] SANDRA G, MARIA S. Hybrid mode-stirring technique for shielding effectiveness measurement of enclosures using reverberation chambers[C]//IEEE International Symposium on Electromagnetic Compatibility. Piscataway:IEEE Press, 2007:2266-2271.
[20] MARVIN A C, DAWSON J F. Shielding effectiveness estimation of physically small electrically large enclosures through dimensional scaling[C]//International Symposium on Electromagnetic Compatibility. Piscataway:IEEE Press, 2012:652-656.
[21] 刘逸飞, 陈永光, 贾锐. 混响室条件下小尺寸腔体屏蔽效能测试[J]. 北京理工大学学报, 2015, 35(11):1158-1163. LIU Y F, CHEN Y G, JIA R. Test of shielding effectiveness of small size cavity under reverberation chamber condition[J]. Journal of Beijing Institute of Technology, 2015, 35(11):1158-1163(in Chinese).
[22] 崔杨. 矩形金属腔体屏蔽效能分析[D]. 西安:西安电子科技大学, 2011. CUI Y. Analysis of shielding effectiveness of rectangular metal cavity[D]. Xi'an:Xidian University, 2011(in Chinese).
[23] RTCA Inc. Environmental conditions and test procedures for airborne equipment:RTCA/DO-160G[S]. Washington D.C.:RTCA Inc, 2010.
[24] 国防科学技术工业委员会.小屏蔽体屏蔽效能测量方法:GJB 5185-2003[S]. 北京:国防科工委军标出版社,2003. COSTIND. Methods for shielding effectiveness of small-sized shielding enclosures:GJB 5185-2003[S]. Beijing:National Defense Military Standard Press, 2003.
[25] 阎芳, 刘旭红, 王鹏, 等. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究[J]. 电光与控制, 2019, 26(8):90-94. YAN F, LIU X H, WANG P, et al. Study on shielding effectiveness of metal cavities with different hole arrays in high strength radiation field[J]. Electronics Optics & Control, 2019, 26(8):90-94(in Chinese).
[26] 任丹, 杜平安, 聂宝林, 等. 一种考虑小孔尺寸效应的孔阵等效建模方法[J]. 物理学报, 2014, 63(12):121-128. REN D, DU P A, NIE B L, et al. An equivalent modeling method of hole array considering the effect of small hole size[J]. Journal of Physics, 2014, 63(12):121-128(in Chinese).