过载约束下的大机动目标协同拦截

  • 肖惟 ,
  • 于江龙 ,
  • 董希旺 ,
  • 李清东 ,
  • 任章
展开
  • 北京航空航天大学 飞行器控制一体化技术国防科技重点实验室, 北京 100083

收稿日期: 2019-12-13

  修回日期: 2019-12-26

  网络出版日期: 2020-01-02

基金资助

国家自然科学基金(61922008,61973013,61873011,61803014)

Cooperative interception against highly maneuvering target with acceleration constraints

  • XIAO Wei ,
  • YU Jianglong ,
  • DONG Xiwang ,
  • LI Qingdong ,
  • REN Zhang
Expand
  • Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100083, China

Received date: 2019-12-13

  Revised date: 2019-12-26

  Online published: 2020-01-02

Supported by

National Natural Science Foundation of China (61922008,61973013,61873011,61803014)

摘要

研究了非线性拦截几何下具有过载约束的多枚弱机动能力的导弹拦截强机动能力的目标的协同拦截问题。首先,在建立导弹的可达域、导弹的可行域以及目标的逃逸域这3个概念的基础上提出了非线性拦截几何下的基于逃逸域覆盖的协同拦截策略,并提出了基于标准弹道的设计方法。然后,给出了协同拦截制导律的形式,研究了导弹的末制导初始阵位、制导律参数以及导弹对目标机动的覆盖区域这三者间的关系,并设计了数值求解算法来实现对多弹的覆盖区域的分配、协同制导律的设计以及多弹初始拦截阵位的配置。最后,对理论结果进行仿真。结果显示,多枚机动性较小的导弹,通过初始拦截阵位的合理配置和协同拦截制导律的合理设计,可以实现对机动性能较强的目标的协同拦截。

本文引用格式

肖惟 , 于江龙 , 董希旺 , 李清东 , 任章 . 过载约束下的大机动目标协同拦截[J]. 航空学报, 2020 , 41(S1) : 723777 -723777 . DOI: 10.7527/S1000-6893.2019.23777

Abstract

In this paper, the cooperative interception of multiple inferior missiles with acceleration constraints to intercept a highly maneuvering target is studied using the nonlinear interception geometry. Firstly, based on the establishment of the reachable region of the missile, the feasible region of the missile, and the escape region of the target, a cooperative interception strategy based on the coverage of escape region using nonlinear interception geometry and a design method based on the standard trajectory are proposed. Secondly, after giving the form of co-operative guidance law, the relationship between the initial position of the terminal guidance phase, the parameters of the guidance law, and the coverage area of the maneuvering range of the target is studied. A numerical algorithm is designed to realize the allocation of the coverage area, the design of the cooperative guidance law, and the configuration of the initial interception position. Finally, the theoretical results are simulated. The results show that multiple missiles with weak maneuverability can intercept highly maneuvering target through a reasonable configuration of the initial interception position and a reasonable design of parameters in the cooperative guidance law.

参考文献

[1] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2):206-266.
[2] HE S M, LIN D F. Three-dimensional optimal impact time guidance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4):941-948.
[3] ZHAO Q L, DONG X W, LIANG Z X, et al. Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies[J]. Chinese Journal of Aeronautics, 2017, 30(4):1570-1581.
[4] KUMAR S R, GHOSE D. Impact time guidance for large heading errors using sliding mode control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):3123-3138.
[5] LEE J K, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):301-310.
[6] CHEN Y D, WANG J N, WANG C Y, et al. Impact time and angle control based on constrained optimal solutions[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10):2445-2451.
[7] KANG S, KIM H J. Differential game missile guidance with impact angle and time constraints[C]//Proceedings of the International Federation of Automatic Control World Congress, 2011:3920-3925.
[8] JUNG B, KIM Y. Guidance laws for anti-ship missiles using impact angle and impact time[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[9] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6):1436-1449.
[10] SHAFERMAN V, SHIMA T. Cooperative differential games guidance laws for imposing a relative intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2465-2480.
[11] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6):1605-1611. ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1605-1611(in Chinese).
[12] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):275-280.
[13] SHAFERMAN V, OSHMAN Y. Cooperative interception in a multi-missile engagement[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2009.
[14] YUKSEK B, URE N K, INALHAN G. Cooperative interception of a highly manoeuvrable aerial target[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[15] SU W S, SHIN H S, CHEN L, et al. Cooperative interception strategy for multiple inferior missiles against one highly maneuvering target[J]. Aerospace Science and Technology, 2018, 80:91-100.
[16] SU W S, LI K B, CHEN L. Coverage-based cooperative guidance strategy against highly maneuvering target[J]. Aerospace Science and Technology, 2017(71):147-155.
[17] SU W S, LI K B, CHEN L. Coverage-based three-dimensional cooperative guidance strategy against highly maneuvering target[J]. Aerospace Science and Technology, 2019, 85:556-566.
[18] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2008:90-135. QIAN X F, LIN R X, ZHAO Y N. Missile flight me-chanics[M]. Beijing:Beijing Institute of Technology Press, 2008:90-135(in Chinese).
[19] NESLINE F W, ZARCHAN P. A new look at classical vs modern homing missile guidance[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(1):78-85.
[20] ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston:AIAA, 2012.
[21] YUAN P J, CHERN J S. Analytic study of biased proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(1):185-190.
文章导航

/