多飞行器再入段时间协同弹道规划方法

  • 姜鹏 ,
  • 郭栋 ,
  • 韩亮 ,
  • 李清东 ,
  • 任章
展开
  • 1. 国防科技大学 系统工程学院, 长沙 410073;
    2. 中国运载火箭技术研究院, 北京 100076;
    3. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
    4. 北京航空航天大学 中法工程师学院, 北京 100083;
    5. 北京航空航天大学 大数据科学与脑机智能高精尖创新中心, 北京 100083

收稿日期: 2019-12-13

  修回日期: 2019-12-26

  网络出版日期: 2020-01-02

基金资助

国家自然科学基金(61922008,61973013,61873011,61803014)

Trajectory optimization for cooperative reentry of multiple hypersonic glide vehicle

  • JIANG Peng ,
  • GUO Dong ,
  • HAN Liang ,
  • LI Qingdong ,
  • REN Zhang
Expand
  • 1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
    2. China Academy of Launch Vehicle Technology, Beijing 100076, China;
    3. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    4. School of Sino-French Engineer, Beihang University, Beijing 100083, China;
    5. Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100083, China

Received date: 2019-12-13

  Revised date: 2019-12-26

  Online published: 2020-01-02

Supported by

National Natural Science Foundation of China (61922008, 61973013, 61873011, 61803014)

摘要

提出了一种多飞行器再入段时间协同弹道规划方法。首先,在纵向平面内规划满足航程与终端约束的纵向标称轨迹。随后,在采用轨迹跟踪律跟踪纵向标称轨迹的同时,运用考虑初始横侧向状态的多边界航向偏差角走廊策略控制飞行器的横侧向机动,以满足到达时间约束与终端约束,进而实现单枚飞行器到达时间约束下的轨迹规划。在此基础上,完成了飞行器的到达时间分布与飞行能力分析,给出了最小与最大到达时间的分析计算方法,并根据多飞行器协同再入的任务需求完成了协同飞行时间决策。最后,多飞行器协同再入与扰动条件下的仿真结果表明,该方法能够规划出满足到达时间与终端约束的协同再入轨迹,具备良好的计算精度与鲁棒性。

本文引用格式

姜鹏 , 郭栋 , 韩亮 , 李清东 , 任章 . 多飞行器再入段时间协同弹道规划方法[J]. 航空学报, 2020 , 41(S1) : 723776 -723776 . DOI: 10.7527/S1000-6893.2019.23776

Abstract

This paper presents a trajectory optimization method for the cooperative reentry of multiple hypersonic glide vehicles. First, the nominal longitudinal trajectory is planned to satisfy the path and terminal constraints. Second, the trajectory tracking law is used to track the nominal longitudinal trajectory. Meanwhile, a multi-layer bounded corridor for heading error considering the initial lateral state is proposed to control the lateral maneuver, so as to meet the requirement of arrival time and the terminal constraints. Then the trajectory planning with arrival time constraints for a single vehicle is implemented. On this basis, the arrival time distribution and the flight capability are analyzed, and the analysis and the calculation methods for the minimum and the maximum arrival time are given. For the multiple hypersonic glide vehicle cooperative reentry scenario, the cooperative flight time decision-making is completed. Finally, numerical results show that the trajectory optimization method achieves a good performance on the arrival time and the terminal constraints, which indicates that the proposed method can realize the cooperative reentry of multiple hypersonic glide vehicle. The results in dispersed cases indicate that the trajectory optimization method has good calculation accuracy and robustness.

参考文献

[1] 柳青, 朱坤, 赵欣. 高超声速精确打击武器制导控制关键技术[J]. 战术导弹技术, 2018(6):63-69. LIU Q, ZHU K, ZHAO X. Key technologies of guidance and control for hypersonic precise strike weapon[J]. Tactical Missile Technology, 2018(6):63-69(in Chinese).
[2] 柴琨琦, 王健, 杨令飞. 高超声速快速精确打击技术发展分析[J]. 战术导弹技术, 2015(5):13-17,29. CHAI K Q, WANG J, YANG L F. Analysis of hypersonic prompt precision strike technique development[J]. Tactical Missile Technology, 2015(5):13-17,29(in Chinese).
[3] LIANG Z X, REN Z, LI Q D, et al. Decoupled three-dimensional entry trajectory planning based on maneuver coefficient[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(7):1281-1292.
[4] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[5] CHOU H C, ARDEMA M D, BOWLES J V. Near-optimal entry trajectories for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):983-990.
[6] LIANG Z X, LIU S Y, LI Q D, et al. Lateral entry guidance with no-fly zone constraint[J]. Aerospace Science and Technology, 2017, 60:39-47.
[7] LIANG Z X, REN Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4):1-10.
[8] JORRIS T R, COBB R G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):551-572.
[9] ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 26(6):1544-1553.
[10] LIU X F, SHEN Z J, LU P. Solving the maximum-crossrange problem via successive second-order cone programming with a line search[J]. Aerospace Science and Technology, 2015, 47:10-20.
[11] LIU X F, SHEN Z J, LU P. Entry Trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2), 227-241.
[12] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2):260-266.
[13] KIM T H, LEE C H, JEON I S, et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2806-2817.
[14] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):275-280.
[15] JUNG B, KIM Y. Guidance laws for anti-ship missiles using impact angle and impact time[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[16] CHO D, KIM H J, TAHK M J. Nonsingular sliding mode guidance for impact time control[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):61-68.
[17] 孙雪娇, 周锐, 吴江,等. 多导弹分布式协同制导与控制方法[J]. 北京航空航天大学学报, 2014, 40(1):120-124. SUN X J, ZHOU R, WU J, et al. Distributed cooperative guidance and control for multiple missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1):120-124(in Chinese).
[18] 赵启伦, 陈建, 董希旺, 等. 拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37(3):936-948. ZHAO Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):936-948(in Chinese).
[19] ZHAO J, ZHOU R. Obstacle avoidance for multi-missile network via distributed coordination algorithm[J]. Chinese Journal of Aeronautics, 2016, 29(2):441-447.
[20] ZHAO J, ZHOU R, DONG Z. Three-dimensional cooperative Guidance laws against stationary and maneuvering targets[J]. Chinese Journal of Aeronautics, 2015, 28(4):1104-1120.
[21] ZHOU J, YANG J. Distributed guidance law design for cooperative simultaneous attacks with multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10):2439-2447.
[22] 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3):322565. WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322565(in Chinese).
[23] CHU H, LI J, DONG Y, et al. Improved MPSP method-based cooperative re-entry guidance for hypersonic gliding vehicles[C]//MATEC Web of Conferences, 2017.
[24] 李征, 彭博, 陈海东,等. 可重复使用航天器时间协同飞行轨迹优化[J/OL]. (2019-11-14)[2019-12-08]. 计算机仿真, 2020(1):40-45. LI Z, PENG B, CHEN H D, et al. Time-coordination reentry trajectory design for reusable launch vehicle[J/OL]. (2019-11-14)[2019-12-08].Computer Simulation, 2020(1):40-45(in Chinese).
[25] BRYSON A E, HO Y C. Applied optimal control[M]. Washington, D.C.:Hemisphere Publishing Corporation, 1975.
[26] PHILLIPS T H. A common aero vehicle (Cav) model, description, and employment guide[R]. Schafer Corporation for AFRL and AFSPC, 2003.
文章导航

/