固体力学与飞行器总体设计

复材机翼气弹特性工程化设计分析技术

  • 杨军 ,
  • 常楠 ,
  • 甘学东 ,
  • 甘建 ,
  • 刘健
展开
  • 中国航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2019-09-10

  修回日期: 2019-10-08

  网络出版日期: 2020-01-02

Engineering design and analysis technique of aeroelastic characteristics of composite wing

  • YANG Jun ,
  • CHANG Nan ,
  • GAN Xuedong ,
  • GAN Jian ,
  • LIU Jian
Expand
  • AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2019-09-10

  Revised date: 2019-10-08

  Online published: 2020-01-02

摘要

本文在静气弹的基本原理分析基础上,发展了机翼气弹特性工程化设计方法:基于参数化的机翼气动弹性模型,研究了复合材料机翼整体蒙皮重要设计参数对舵效、静变形和静强度的影响,采用变参分析方法进行了灵敏度分析,获取影响舵效的关键参数变化趋势,用以指导舵效气动弹性剪裁优化设计。对优化设计结果进行了工程化的处理并进行校核,获得了工程可用的蒙皮铺层设计方案,在改善舵效使其满足飞机性能要求的同时,还获得了满意的减重105 kg(总质量的14%)效益。

本文引用格式

杨军 , 常楠 , 甘学东 , 甘建 , 刘健 . 复材机翼气弹特性工程化设计分析技术[J]. 航空学报, 2020 , 41(6) : 523477 -523477 . DOI: 10.7527/S1000-6893.2019.23477

Abstract

Based on the fundamental principal analysis of static aeroelastics, the paper develops the engineering design method for wing aeroelastic characteristics. On the basis of parameterized aeroelastic model, the impacts of important parameters of composite wing integral skin on rudder effectiveness, static deformation, and static strength are studied. Using the variational analytical method, a sensitivity analysis is carried out to obtain the trends of those critical parameters affecting the rudder effectiveness, which can guide the aeroelastic tailoring optimal design of the rudder effectiveness. Furthermore, the optimized design results are treated to satisfy the engineering requirement and are verified, obtaining the engineering applicable skin ply scheme. The proposed design not only optimizes the rudder effectiveness to fulfill the aircraft performance requirement, but also helps the composite skin of a certain type of aircraft to gain a satisfactory weight reduction of 105 kg (14 % of the total weight).

参考文献

[1] 管德,钟珂.复合材料翼面的气动剪裁[J].航空学报,1989, 10(5):A221-A226. GUAN D, ZHONG K. Aeroelastic tailoring applied to composite wing[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(5):A221-A226(in Chinese).
[2] 刘钢, 孙宪学, 陈文浦. 一种面向工程的气动弹性剪裁技术[J]. 航空计算技术, 2006, 36(5):73-75. LIU G, SUN X X, CHEN W P. A technique of engineering-oriented aeroelasticity tailoring aeronautical computing technique[J]. Aeronautical Computing Technique, 2006, 36(5):73-75(in Chinese).
[3] 乌国华.复合材料前掠翼的气弹剪裁[J].复合材料学报, 1986, 3(3):88-98. WU G H. The aeroelastic tailoring of swept forward wings with advanced composite[J]. Acta Materiae Compositae Sinica, 1986, 3(3):88-98(in Chinese).
[4] 王红伟, 王志瑾. 复合材料前掠翼的气动弹性优化[J]. 飞机设计,2011, 31(4):24-29. WANG H W, WANG Z J. Aeroelastic optimization for forward-swept wing of composite material[J]. Aircraft Design, 2011, 31(4):24-29(in Chinese).
[5] 金海波.复合材料飞机结构综合优化设计系统研究[D].南京:南京航空航天大学,2003. JIN H B. Study on the system of composte synthesisoptimization for aircraft structures[D].Nanjing:Nanjing university of Aeronautics and Astronautics,2003(in Chinese).
[6] 万志强,邵珂,杨超,等.非均衡铺层壁板复合材料机翼气动弹性分析[J].复合材料学报,2008(1):196-199. WAN Z Q,SHAO K,YANG C, et al. Aeroelastic analysis of composite wings with unbalance laminates[J]. Journal of Composite Materials,2008(1):196-199(in Chinese).
[7] 李太鹏, 徐元铭. 基于PATRAN/NASTRAN的复合材料结构铺层的分级优化设计方法[J]. 固体火箭技术, 2004, 27(4):308-311, 315. LI T P, XU Y M. A multilevel optimization for layer design of composite structures based on PATRAN/NASTRAN[J]. Journal of Solid Rocket Technology, 2004, 27(4):308-311, 315(in Chinese).
文章导航

/