固体力学与飞行器总体设计

基于光纤传感的襟翼操纵载荷试飞技术

  • 黄勇
展开
  • 中国商用飞机有限责任公司 上海飞机设计研究院, 上海 201210

收稿日期: 2019-06-11

  修回日期: 2020-01-03

  网络出版日期: 2020-01-02

Flight test technic for flap operation load with optical fiber sensing

  • HUANG Yong
Expand
  • Shanghai Aircraft Design and Research Institute, COMAC, Shanghai 201210, China

Received date: 2019-06-11

  Revised date: 2020-01-03

  Online published: 2020-01-02

摘要

为了研究民用飞机减速板打开引起的襟翼载荷增量,验证襟翼中小偏度下的严重操纵载荷准确性,避免成本高昂的特殊构型试验件研制和减少机上管线敷设空间限制等问题,针对某具体型号襟翼运动机构,建立了基于光纤传感的操纵载荷测量系统、测量系统校准方法,完成襟翼作动器操纵载荷和翼面总载荷的直接验证与确认。试飞实施结果表明,基于光纤传感的襟翼操纵载荷识别及测试技术在某型号减速板打开后襟翼操纵载荷试飞中的研究应用,为襟翼操纵载荷验证提供了一种有效的高精度、低成本试飞测试方法。

本文引用格式

黄勇 . 基于光纤传感的襟翼操纵载荷试飞技术[J]. 航空学报, 2020 , 41(4) : 223213 -223213 . DOI: 10.7527/S1000-6893.2019.23213

Abstract

In order to investigate the flap load increment caused by brakes extension for civil transport, verify the accuracy of the critical operation load for flap with small and medium deflection, avoid the development of additional special configuration test pieces and reduce the space limitation of the pipeline laying on the aircraft, aiming at a specific type of flap mechanism, a flap operation load measurement system based on optical fiber sensor and the calibration method of the measurement system are established. The method is used to directly verify and confirm the operation load of the flap actuator and the total load of the flap panel. The results of flight test show that the technology of flap control load identification and test technic based on optical fiber sensor is applied in the study of flap control load with brakes opening effect on a certain transport, which provides an effective high-precision and low-cost flight test method for flap control load verification.

参考文献

[1] LU W S, TIAN Y, LIU P Q. Aerodynamic optimization and mechanism design of fiexible variable camber trailing-edge flap[J]. Chinese Journal of Aeronautics, 2017,30(3):998-1003.
[2] 王运涛,李松,孟德虹,等.不同襟翼偏角梯形翼构型气动特性数值模拟[J].航空学报, 2015,36(6):1823-1829. WANG Y T, LI S, MENG D H, et al. Numerical simulation of aerodynamic characteristics of trapezoidal wing configuration at different flap angles[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(6):1823-1829(in Chinese).
[3] 米百刚,詹浩,朱军.二维干净翼型、增升构型地面效应的数值模拟研究[J].应用力学学报, 2013,30(6):822-827. MI B G, ZHAN H, ZHU J. Numerical simulation on aerodynamic characteristic of clean and multi-element airfoils in ground effect[J]. Chinese Journal of Applied Mechanics, 2013,30(6):822-827(in Chinese).
[4] 秦绪国,刘沛清,屈秋林,等.多段翼型地面效应数值模拟与分析[J].航空动力学报, 2011,26(4):890-896. QIN X G, LIU P Q, QU Q L, et al. Numerical simulation on stall of wing in ground effect[J]. Journal of Aerospace Power, 2011, 26(4):890-896(in Chinese).
[5] 秦绪国,刘沛清,屈秋林,等.三维多段机翼地面效应数值模拟[J].航空学报,2011,32(2):257-264. QIN X G, LIU P Q, QU Q L,et al. Numercial simulation on 3Dmulti-element wings in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(2):257-264(in Chinese).
[6] 李孝伟,乔志德.多段翼型大迎角下主翼、襟翼上的分离流及缝道流动[J].航空学报, 1999,20(1):55-57. LI X W, QIAO Z D. Seperated flows over main element and flap of multielement airfoil at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1999,20(1):55-57(in Chinese).
[7] 朱自强,陈迎春,吴宗成,等.高升力系统外形的数值模拟计算[J].航空学报, 2005,26(6):257-262. ZHU Z Q, CHEN Y C, WU Z C,et al. Numerical simulation of high lift system configuration[J]. Acta Aeronautica et Astronautica Sinica, 2005,26(6):257-262(in Chinese).
[8] 李孝伟,乔志德.带襟、副翼三维机翼粘性绕流计算[J].航空学报, 2001,22(3):55-57. LI X W, QIAO Z D. Navier-stokes computations for the wings with flaps or aileron[J]. Acta Aeronautica et Astronautica Sinica, 2001,22(3):55-57(in Chinese).
[9] 孙智伟,白俊强,高正红,等.现代超临界翼型设计及其风洞试验[J].航空学报,2015,36(3):804-818. SUN Z W, QIAO J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(3):804-818(in Chinese).
[10] 肖涛,代钦.Gurney襟翼对机翼地面效应气动特性和流动结构的影响实验研究[J].空气动力学学报, 2013,31(5):572-578. XIAO T, DAI Q. The experimental study of aerodynamics and flow structures of a wing with Gurney flap in ground effect[J]. Acta Aerodynamica Sinica, 2013, 31(5):572-578(in Chinese).
[11] 熊磊,刘洋,毛俊.大型运输类飞机后缘襟翼气动载荷特性分析[J].空气动力学学报,2017,35(3):400-403. XIONG L, LIU Y, MAO J. Analysis of flight load characteristics of transport aircraft flap[J]. Acta Aerodynamica Sinica, 2017,35(3):400-403(in Chinese).
[12] 中国民用航空局.中国民用航空规章第25部:运输类飞机适航标准:CCAR25-R4[S].北京:中国民用航空局, 2011:43. Civil Aviation Administration of China China. Civil Aviation Regulations Part 25 Airworthiness Standard:Transport Category Airplanes:CCAR25-R4[S]. Beijing:Civil Aviation Authority of China,2011:43(in Chinese).
[13] 王兆东.民机飞行载荷的试飞验证[J].民用飞机设计与研究, 2011,(2):16-20. WANG Z D. The test flight demonstration of civil airplane flight load[J]. Civil Aircraft Design and Research, 2011,(2):16-20(in Chinese).
[14] 刘冲冲,邹翔,周正仙.高精度动态光纤应变传感研究[J].光子学报, 2016,45(11):1106007-1-1106007-6. LIU C C, ZOU X, ZHOU Z X. Study of high-precision dynamic optical fiber strain sensing[J]. Acta Photonica Sinica, 2016,45(11):1106007-1-1106007-6(in Chinese).
[15] 卢卫涛,张拴民,陈安锋,等.高灵敏度光纤应变传感器[J].应用光学,2017, 38(5):848-851. LU W T, ZHANG S M, CHEN A F,et al. High sensitive fiber strain sensor[J]. Journal of Applied Optic, 2017, 38(5):848-851(in Chinese).
[16] 徐先东.光纤光栅温敏与温度补偿式封装技术的研究[D].武汉:武汉理工大学,2003:12-23. XU X D. Study of fiber bragg grating packaging technology on temperature sensitivity and temperature compensation[D]. Wuhan:Wuhan University of Technology, 2003:12-23(in Chinese).
[17] 张春光,黄民双,陶宝祺.光纤应变传感技术研究[J].连云港化工高专学报, 1998,11(4):7-10. ZHANG C G, HUANG M S,TAO B Q. Study of optical fiber strain technology[J]. Journal of Lianyungang College of Chemical Technology, 1998,11(4):7-10(in Chinese).
[18] 陈池,周宜红.大量程分布式光纤传感技术研究及工程应用[D].武汉:武汉大学,2013:5-10. CHEN C,ZHOU Y H. The sensing technology and application of broad dynamic range distributed optical fiber sensor[D]. Wuhan:Wuhan University, 2013:5-10(in Chinese).
[19] 杨全伟,舒成辉,赵华.飞机机翼载荷校准试验的有限元仿真方法[J].系统仿真学报, 2008,20(23):6569-6571. YANG Q W, SHU C H, ZHAO H. Technology of FEM simulation in aircraft wing loads calibration test[J]. Journal of System Simulation, 2008, 20(23):6569-6571(in Chinese).
[20] 范华飞,李俊,李志蕊.短连杆飞行载荷实测技术[J].航空工程进展, 2015,6(4):447-451. FAN H F,LI J, LI Z R. Flight loads measurement technique for short rods[J]. Advances in Aeronautical Science and Eingineering, 2015,6(4):447-451(in Chinese).
[21] 金秀芬,余建虎,于秀伟.民用飞机载荷校准试验关键技术浅析[J].航空工程进展, 2017,8(1):105-108. JIN X F,YU J F,YU X W. Initial analysis on the key technologies of civil aircraft load calibration test[J]. Advances in Aeronautical Science and Engineering, 2017,8(1):105-108(in Chinese).
文章导航

/