执行器饱和的多智能体一致性控制

  • 郜晨 ,
  • 何潇
展开
  • 1. 清华大学 自动化系, 北京 100084;
    2. 北京信息科学与技术国家研究中心(BNRist), 北京 100084

收稿日期: 2019-11-14

  修回日期: 2019-11-28

  网络出版日期: 2019-12-26

基金资助

国家自然科学基金(61733009);国家重点研发计划(2017YFA0700300)

Consensus control for multi-agent systems subject to actuator saturations

  • GAO Chen ,
  • HE Xiao
Expand
  • 1. Department of Automation, Tsinghua University, Beijing 100084, China;
    2. Beijing National Research Center for Information Science and Technology(BNRist), Beijing 100084, China

Received date: 2019-11-14

  Revised date: 2019-11-28

  Online published: 2019-12-26

Supported by

National Natural Science Foundation of China (61733009); National Key Research and Development Program of China (2017YFA0700300)

摘要

针对执行器饱和约束下的一类离散多智能体系统,设计了一种基于线性矩阵不等式的一致性控制律,并对线性矩阵不等式解的存在性进行了分析。由于饱和环节的影响,导致多智能体系统的一致性与个体的初始状态有关,不同的控制律所能允许的个体之间的初始偏差的范围不同。为了定量分析控制律所对应的初始偏差范围,引入吸引域的概念对所设计的控制律进行评估,并对控制律参数进行优化以扩大吸引域的范围。最后,通过数值仿真说明了所设计控制律的有效性。

本文引用格式

郜晨 , 何潇 . 执行器饱和的多智能体一致性控制[J]. 航空学报, 2020 , 41(S1) : 723760 -723760 . DOI: 10.7527/S1000-6893.2019.23760

Abstract

Targeting at a class of discrete Multi-Agent Systems (MASs) subject to actuator saturations, a novel consensus controller based on Linear Matrix Inequalities (LMIs) is proposed and the existence of the solution for the LMI is examined. Due to the actuator saturation, the consensus control problem of MASs is related to the initial states of agents. Different controllers may tolerate different ranges of initial states. In order to quantitatively analyze the effects caused by the range of initial states, this paper introduces the concept of Domain of Attraction (DOA) to evaluate the controllers and, subsequently, the controller parameters are optimized to enlarge the DOA. Finally, simulation examples are provided to illustrate the effectiveness of the proposed controller.

参考文献

[1] KWON C, HWANG I. Sensing-based distributed state estimation for cooperative multiagent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(6):2368-2382.
[2] SONG W, WANG J, ZHAO S, et al. Event-triggered cooperative unscented Kalman filtering and its application in multi-UAV systems[J]. Automatica, 2019, 105:264-273.
[3] LIU Q, WANG Z, HE X, et al. On Kalman-consensus filtering with random link failures over sensor networks[J]. IEEE Transactions on Automatic Control, 2018, 63(8):2701-2708.
[4] XIAO H, CUI R, XU D. A sampling-based Bayesian approach for cooperative multiagent online search with resource constraints[J]. IEEE Transactions on Cybernetics, 2018, 48(6):1773-1785.
[5] LI P, DUAN H. A potential game approach to multiple UAV cooperative search and surveillance[J]. Aerospace Science and Technology, 2017, 68:403-415.
[6] GAO C, ZHEN Z, GONG H. A self-organized search and attack algorithm for multiple unmanned aerial vehicles[J]. Aerospace Science and Technology, 2016, 54:229-240.
[7] THUNBERG J, GONCALVES J, HU X. Consensus and formation control on SE(3) for switching topologies[J]. Automatica, 2016, 66:109-121.
[8] CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5):852-862.
[9] SOMARAKIS C, BARAS J S. Delay-independent stability of consensus networks with application to flocking[J]. IFAC-PapersOnLine, 2015, 48(12):159-164.
[10] JI H, LEWIS F L, HOU Z, et al. Distributed information-weighted Kalman consensus filter for sensor networks[J]. Automatica, 2017, 77:18-30.
[11] GARCIA E, MOU S, CAO Y, et al. An event-triggered consensus approach for distributed clock synchronization[C]//Proceedings of the American Control Conference, 2017:279-284.
[12] REYNOLDS C W. Flocks, herds and schools:A distributed behavioral model[J]. Computer Graphics, 1987, 21(4):25-34.
[13] VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226.
[14] FAX J A, MURRAY R M. Graph Laplacians and stabilization of vehicle formations[C]//IFAC Proceedings Volumes, 2002, 35(1):55-60.
[15] OLFATI-SABER R, MURRAY R M. Consensus protocols for networks of dynamic agents[C]//Proceedings of the American Control Conference, 2003:951-956.
[16] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[17] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):655-661.
[18] MENG Z, REN W, CAO Y, et al. Leaderless and leader-following consensus with communication and input delays under a directed network topology[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(1):75-88.
[19] ZHANG F, TRENTELMAN H L, SCHERPEN J M. Fully distributed robust synchronization of networked Lur'e systems with incremental nonlinearities[J]. Automatica, 2014, 50(10):2515-2526.
[20] LI Z, CHEN M Z Q, DING Z. Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs[J]. Automatica, 2016, 68:179-183.
[21] WANG X, LI S, LAM J. Distributed active anti-disturbance output consensus algorithms for higher-order multi-agent systems with mismatched disturbances[J]. Automatica, 2016, 74:30-37.
[22] WANG Y, SONG Y, KRSTIC M, et al. Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures[J]. Automatica, 2016, 63:374-383.
[23] HOU W, FU M, ZHANG H, et al. Consensus conditions for general second-order multi-agent systems with communication delay[J]. Automatica, 2017, 75:293-298.
[24] CHENG L, WANG Y, REN W, et al. On convergence rate of leader-following consensus of linear multi-agent systems with communication noises[J]. IEEE Transactions on Automatic Control, 2016, 61(11):3586-3592.
[25] MA L, WANG Z, LAM H K. Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations[J]. IEEE Transactions on Automatic Control, 2017, 62(7):3524-3531.
[26] WANG L, WANG Z, HAN Q L, et al. Synchronization control for a class of discrete-time dynamical networks with packet dropouts:A coding-decoding-based approach[J]. IEEE Transactions on Cybernetics, 2018, 48(8):2437-2448.
[27] JIAO J, TRENTELMAN H L, CAMLIBEL M K. A suboptimality approach to distributed H2 optimal control[J]. IFAC-PapersOnLine, 2018, 51(23):154-159.
[28] LIN Z, SABERI A. Semi-global exponential stabilization of linear systems subject to "input saturation" via linear feedbacks[J]. Systems & Control Letters, 1993, 21(3):225-239.
[29] BANG H, TAHK M J, CHOI H D. Large angle attitude control of spacecraft with actuator saturation[J]. Control Engineering Practice, 2003, 11(9):989-997.
[30] LIN Z, SABERI A. A semi-global low-and-high gain design technique for linear systems with input saturation-stabilization and disturbance rejection[J]. International Journal of Robust and Nonlinear Control, 1995, 5(5):381-398.
[31] SU H, CHEN M Z Q, WANG X, et al. Semiglobal observer-based leader-following consensus with input saturation[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6):2842-2850.
[32] SU H, QIU Y, WANG L. Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances[J]. ISA Transactions, 2017, 67:131-139.
[33] SU H, YE Y, QIN Y, et al. Semi-global output consensus for discrete-time switching networked systems subject to input saturation and external disturbances[J]. IEEE Transactions on Cybernetics, 2019, 49(11):3934-3945.
[34] MENG Z, ZHAO Z, LIN Z. On global leader-following consensus of identical linear dynamic systems subject to actuator saturation[J]. Systems & Control Letters, 2013, 62(2):132-142.
[35] YANG T, MENG Z, DIMAROGONAS D V, et al. Global consensus for discrete-time multi-agent systems with input saturation constraints[J]. Automatica, 2014, 50(2):499-506.
[36] MA C Q, ZHANG J F. Necessary and sufficient conditions for consensusability of linear multi-agent systems[J]. IEEE Transactions on Automatic Control, 2010, 55(5):1263-1268.
[37] ZUO Z, WANG Y. On enlarging the domain of attraction for linear systems subject to actuator saturation[J]. International Journal of General Systems, 2008, 37(2):239-248.
[38] LI Z, DUAN Z. Cooperative control of multi-agent systems:A consensus region approach[M]. Boca Raton:CRC Press, 2017:62.
[39] KATAYAMA T. On the matrix Riccati equation for linear systems with random gain[J]. IEEE Transactions on Automatic Control, 1976, 21(5):770-771.
文章导航

/