基于Leader-Follower的多无人机编队轨迹跟踪设计

  • 王晶 ,
  • 顾维博 ,
  • 窦立亚
展开
  • 北京化工大学 信息科学与技术学院, 北京 100013

收稿日期: 2019-12-13

  修回日期: 2019-12-25

  网络出版日期: 2019-12-26

基金资助

国家自然科学基金(61973023,61573050);北京市自然科学基金(4202052);中央高校基本科研业务费专项基金(XK1802-4)

Leader-Follower formation control of multiple UAVs with trajectory tracking design

  • WANG Jing ,
  • GU Weibo ,
  • DOU Liya
Expand
  • School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China

Received date: 2019-12-13

  Revised date: 2019-12-25

  Online published: 2019-12-26

Supported by

National Natural Science Foundation of China(61973023,61573050); Beijing Natural Science Foundation (4202052);the Fundamental Research Funds for the Central Universities(XK1802-4)

摘要

针对四旋翼无人机(UAV)群在轨迹跟踪过程中易受外界干扰而引起跟踪误差的问题,设计了基于Leader-Follower的多无人机协同编队轨迹跟踪控制方法。在该系统中,首先通过积分反步法(IBS)对所建四旋翼飞行器模型设计Leader无人机的轨迹跟踪控制器。其次设计了滑模控制(SMC)器,以控制Leader与Follower无人机实现期望的编队队形并同时跟踪参考轨迹。然后通过数值仿真验证了算法的有效性,仿真结果表明,系统具有良好的控制精度。最后通过视觉定位系统进行实验,结果表明所设计的控制器能够实现多个无人机轨迹跟踪和编队控制,所设计的算法具有可行性。

本文引用格式

王晶 , 顾维博 , 窦立亚 . 基于Leader-Follower的多无人机编队轨迹跟踪设计[J]. 航空学报, 2020 , 41(S1) : 723758 -723758 . DOI: 10.7527/S1000-6893.2019.23758

Abstract

Leader-follower formation control of multiple Unmanned Aerial Vehicle (UAVs) is studied to solve the tracking error caused by the unknown disturbance on the quadrotor UAV group. In this system, firstly, the trajectory tracking controller of the leader UAV is designed by Integral BackStepping (IBS) on the established quadrotor aircraft model. Secondly, a formation control law based on Sliding Mode Control (SMC) is designed to drive the leader and follower UAVs to the desired formation while tracking the reference trajectory. Then the effectiveness of the designed control algorithms is verified by numerical simulations. The simulation results show that the system has good control accuracy. Finally, a experiment of the designed controllers is carried out on Parrot Bebop 2 quadrotor UAVs through the visual positioning system. The experimental results show that the designed controller can achieve the desired tracking and formation of multiple UAVs, verifying the feasibility of the designed controllers.

参考文献

[1] 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32(6):1075-1083. CHEN Z J, WEI J Z, WANG Y X, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1075-1083(in Chinese).
[2] 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49(3):1-14. ZONG Q, WANG D D, SHAO S K, et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technoogy, 2017, 49(3):1-14(in Chinese).
[3] 吴梅, 涂彪, 罗瑜. 基于反步滑模法的四旋翼飞行器轨迹跟踪控制[J]. 飞行力学,2019, 36(3):47-51. WU M, TU B, LUO Y. Trajectory tracking control of four-rotor aircraft based on backstepping sliding mode method[J]. Flight Dynamics, 2018, 36(3):47-51(in Chinese).
[4] 郑世钰, 艾晓琳, 杨迪,等. 基于积分反步法的四旋翼滑模轨迹跟踪算法[J]. 系统工程与电子技术,2019,41(3):643-650. ZHENG S Y, AI X L, YANG D, et al. Sliding mode tra jectory tracking algorithm of four rotor based on integralbackstepping method[J]. Systems Engineering and Electronic Technology, 2019, 41(3):643-650(in Chinese).
[5] DAVIDI A, BERMAN N, AROGETI A. Formation flight using multiple integral backstepping controllers[C]//International Conference on Cybernetics and Intelligent Systems, 2011:317-322.
[6] DONG X W, LI Y F, LU C, et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12):1-12.
[7] ZHENG E H, XIONG J J, LUO J L. Second order sliding mode control for a quadrotor UAV[J]. ISA Transactions, 2014, 53(4):1350-1356.
[8] PARSA A, MONFARED S B, KALHOR A. Backstepping control based on sliding mode for station-keeping of stratospheric airship[C]//International Conference on Robotics and Mechatronics, 2018:554-559.
[9] WU H M, KARKOUB M, HWANG C. Mixed fuzzy sliding-mode tracking with backstepping formation control for multi-nonholonomic mobile robots subject to uncertainties[J]. Journal of Intelligence Robot Systems, 2015, 79(1):73-86.
[10] WU B L, WANG D W, POH K E. Decentralized sliding mode control for attitude synchronization in spacecraft formation[J]. International Journal of Robust and Nonlinear Control, 2012, 23(11):1183-1197.
[11] CHANG Y H, CHANG C W, CHEN C L, et al. Fuzzy sliding-mode formation control for multirobot systems:Design and Implementation[J]. IEEE Transactions on Systems, 2012, 42(10):444-457.
[12] PARK B S, PARK J B, CHOI Y H. Robust formation con trol of electrically driven nonholonomic mobile robots via sliding mode technique[J]. Journal of Control, Automation, and Systems,2011,9(5):888-894.
[13] SINCHEZ J, FIERRO R. Sliding mode control for robot formations[C]//International Symposium on Intelligent Control, 2003:438-443.
[14] SHAO J Y, XIE G M, YU J Z, et al. Leader-following formation control of multiple mobile robots[C]//International Symposium on Intelligent Control, 2005:808-813.
[15] 张民, 夏卫政, 黄坤, 等. 基于Leader-Follower编队的无人机协同跟踪地面目标制导律设计[J]. 航空学报, 2018, 39(2):321497. ZHANG M, XIA W Z, HUANG K, et al. Guidance law for cooperative tracking of a ground target based on leader-follower formation of UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):321497(in Chinese).
[16] CHOUTRI K, LAGHA M, DALA L, et al. Quadrotors UAVs swarming control under Leader-Followers formation[C]//International Conference on System Theory, Control and Computing, 2018:794-799.
[17] MERCADO D A, CASTRO R, LOZANO R. Quadrotors flight formation control using a Leader-Follower approach[C]//European Control Conference, 2013:3858-3863.
[18] YU W W, WANG H, CHENG F, et al. Second-order consensus in multiagent systems via distributed sliding mode control[J]. IEEE Transactions on Cybernetics, 2017, 47(8):1872-1881.
[19] RAO S, GHOSE D. Sliding mode control-based auto pilots for leaderless consensus of unmanned aerial vehicles[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1964-1972.
[20] LUO Q, DUAN H B. Distributed UAV flocking con trol based on homing pigeon hierarchical strategies[J]. Aerospace Science and Technology, 2017, 70(8):257-264.
[21] QIU H X,DUAN H B. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments[J]. ISA Transactions, 2017, 71(Pt1):93-102.
[22] SAMIR B, PIERPAOLO M, ROLAND S. Design and control of an indoor micro quadrotor[C]//International Conference on Robotics and Automation, 2004:4393-4398.
[23] DAS A, LEWIS F, SUBBARAO K. Backstepping aproach for controlling a quadrotor using lagrange form dynamics[J]. Journal of Intelligent and Robotic Systems, 2009, 56(2):127-151.
[24] GHAMRY K A, ZHANG Y. Formation control of multiple quadrotors based on Leader-Follower method[C]//2015 International Conference on Unmanned Aircraft Systems, 2015:1037-1042
文章导航

/