基于算子理论的系统可重构性评价与自主重构

  • 徐赫屿 ,
  • 王大轶 ,
  • 李文博 ,
  • 刘成瑞 ,
  • 符方舟
展开
  • 1. 中国空间技术研究院 北京控制工程研究所, 北京 100190;
    2. 中国空间技术研究院 北京空间飞行器总体设计部, 北京 100194;
    3. 中山大学 航空航天学院, 广州 510006

收稿日期: 2019-12-13

  修回日期: 2019-12-25

  网络出版日期: 2019-12-26

基金资助

国家杰出青年科学基金(61525301);国家自然科学基金(61690215,61640304,61573060,61203093)

Reconfigurability evaluation and autonomous reconfiguration of systems based on operator theory

  • XU Heyu ,
  • WANG Dayi ,
  • LI Wenbo ,
  • LIU Chengrui ,
  • FU Fangzhou
Expand
  • 1. Beijing Institute of Control Engineering, China Academy of Space Technology, Beijing 100190, China;
    2. Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100194, China;
    3. School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510006, China

Received date: 2019-12-13

  Revised date: 2019-12-25

  Online published: 2019-12-26

Supported by

National Science Fund for Distinguished Young Scholars (61525301); National Natural Science Foundation of China (61690215,61640304,61573060,61203093)

摘要

针对航天器在轨资源严重受限(包括计算资源、硬件资源以及能量资源)的特点,开展了基于算子理论的航天器姿态控制系统可重构性评价方法和自主重构策略的研究。首先,基于稳定核表示(SKR)和稳定像表示(SIR)的算子理论给出了系统可重构性评价指标,定量地描述了系统的重构能力,突破了基于互质分解理论的系统可重构性评价方法对系统线性性质的局限。同时,基于以上结果,给出了系统可重构性最大边界,为设计人员设计自主重构策略提供了明确的指标;然后,通过在设计阶段考虑系统可重构性,充分挖掘并利用系统重构潜力,为自主重构策略的设计提供理论指导;最后,通过仿真验证了所提方法的有效性和正确性。

本文引用格式

徐赫屿 , 王大轶 , 李文博 , 刘成瑞 , 符方舟 . 基于算子理论的系统可重构性评价与自主重构[J]. 航空学报, 2020 , 41(S1) : 723747 -723747 . DOI: 10.7527/S1000-6893.2019.23747

Abstract

The spacecraft in orbit resources are severely limited, including computing resources, hardware resources, and energy resources. In this paper, the evaluation of reconfigurability and the autonomous reconfiguration strategy for attitude control system of spacecraft are studied based on the operator theory. Firstly, based on the operator theory of Stable Kernel Representation (SKR) and Stable Image Representation (SIR), the evaluation index of system reconfigurability is given, and the ability of system reconfigurability is described quantitatively. The theory breaks through the limitation of the evaluation method of system reconfigurability based on the theory of coprime decomposition to the linear property of system. At the same time, based on the above results, the maximum boundary of system reconfigurability is given, which provides a clear index for designers to design autonomous reconfiguration strategies. Then, by considering the system reconfigurability in the design stage, the system reconfigurability potential is fully exploited and utilized, providing theoretical guidance for the design of autonomous reconfiguration strategy. Finally, the validity and correctness of the proposed method are verified by a simulation example.

参考文献

[1] 王大轶, 黄翔宇. 深空探测自主导航与控制技术综述[J]. 空间控制技术与应用, 2009, 35(3):6-12. WAND D Y, HUANG X Y. Survey of autonomous navigation and control for deep exploration[J]. Space Control Technology and Application, 2009, 35(3):6-12(in Chinese).
[2] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018, 478(10):6-12. YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. International Space[J]. 2018, 478(10):6-12(in Chinese).
[3] 李俊峰, 崔文, 宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践, 2012, 34(2):1-9. LI J F, CUI W, BAOYI H X. A survey of autonomous for deep space exploration[J]. Mechanics and Practice, 2012, 34(2):1-9(in Chinese).
[4] XU H Y, WANG D Y, LIU C R, et al. The study on reconfigurability condition of spacecraft control system[J]. Advances in Astronautics Science and Technology, 2018, 1(2):197-206.
[5] 王大轶, 屠园园, 刘成瑞, 等. 航天器控制系统可重构性的内涵与研究综述[J]. 自动化学报, 2017, 43(10):1687-1702. WANG D Y, TU Y Y, LIU C R, et al. Connotation and research of reconfigurability for spacecraft control systems:A review[J]. Journal of Automation, 2017, 43(10):1687-1702(in Chinese).
[6] BI S, DENG M, WANG L, et al. Operator-based robust control for MIMO non-linear systems with uncertain hysteresis[J]. International Journal of Advanced Mechatronic Systems, 2012, 4(5-6):212-220.
[7] XU H Y, WANG D Y, LI W B. A reconfigurability evaluation method for satellite control system[C]//Proceedings of the 2015 Chinese Intelligent Systems Conference, 2016:593-603.
[8] PAICE A D B, MOORE J B. On the Youla-Kucera parametrization for nonlinear systems[J]. Systems & Control Letters, 1990, 14(2):121-129.
[9] WANG J, ARANOVSKIY S V, BOBTSOV A A, et al. Compensating for a multisinusoidal disturbance based on Youla-Kucera parametrization[J]. Automation and Remote Control, 2017, 78(9):1559-1571.
[10] SCHAFT A J V D, PAICE A D B. Stable Kernel representations and the youla parameterization for nonlinear systems[C]//Proceedings of 199433rd IEEE Conference on Decision and Control. Piscataway:IEEE Press, 1994:781-786.
[11] PAICE A D B, VAN D S A J. The class of stabilizing nonlinear plant controller pairs[J]. IEEE Transactions on Automatic Control, 2002, 41(5):634-645.
[12] PAICE A D B. Stable kernel representations as nonlinear left coprime factorizations[C]//Proceedings of 199433rd IEEE Conference on Decision and Control. Piscataway:IEEE Press, 1994:2786-2791.
[13] 朱芳来, 韩正之, 孙鹏. 非线性互质分解方法中的系统核表示[J]. 信息与控制, 2001(S1):658-664. ZHU F L, HAN Z Z, SUN P. The kernel representations in nonlinear coprime factorizations[J]. Information and Control, 2001(S1):658-664(in Chinese).
[14] 徐赫屿, 王大轶, 刘成瑞, 等. 深空探测器可重构性评价与自主重构策略[J]. 深空探测学报, 2019, 6(4):376-383. XU H Y, WANG D Y, LIU C R, et al. Reconfigurability evaluation and autonomous reconstruction design of deep space probes for stable targets[J]. Journal of Deep Space Exploration, 2019, 6(4):376-383(in Chinese).
[15] DING S X, YANG G, ZHANG P, et al. Feedback control structures, embedded residual signals, and feedback control schemes with an integrated residual access[J]. IEEE Transactions on Control Systems Technology, 2009, 18(2):352-367.
[16] DING S X, YANG Y, ZHANG Y, et al. Data-driven realizations of kernel and image representations and their application to fault detection and control system design[J]. Automatica, 2014, 50(10):2615-2623.
[17] KOENINGS T, KRUEGER M, LUO H, et al. A data-driven computation method for the gap metric and the optimal stability margin[J]. IEEE Transactions on Automatic Control, 2017, 63(3):805-810.
[18] 胡正高, 赵国荣, 李飞, 等. 基于自适应未知输入观测器的非线性动态系统故障诊断[J]. 控制与决策, 2016, 31(5):901-906. HU Z G, ZHAO G R, LI F. et al. Fault diagnosis for nonlinear dynamical system based on adaptive unknown input observer[J]. Control and Decision, 2016, 31(5):901-906(in Chinese).
[19] PEI C, ZONG J C, RUI Z, et al. Autonomous control reconfiguration of aerospace vehicle based on control effectiveness estimation[J]. Chinese Journal of Aeronautics, 2007, 20(5):443-451.
[20] ANDERSON B D O, DE B F. On a nonlinear generalization of the ν-gap metric[C]//IEEE Conference on Decision & Control. Piscataway:IEEE Press, 1999.
文章导航

/