电子电气工程与控制

异构多智能体系统分组输出时变编队跟踪控制

  • 田磊 ,
  • 赵启伦 ,
  • 董希旺 ,
  • 李清东 ,
  • 任章
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
    2. 北京航空航天大学 飞行器控制一体化技术国防科技重点实验室, 北京 100083;
    3. 北京电子工程总体研究所, 北京 100854;
    4. 北京航空航天大学 大数据科学与脑机智能高精尖创新中心, 北京 100083

收稿日期: 2019-10-13

  修回日期: 2019-11-20

  网络出版日期: 2019-12-26

基金资助

国家自然科学基金(61922008,61973013,61873011,61803014);航空科学基金(20170151001);国防创新特区项目(18-163-00-TS-001-001-34);北京市自然科学基金(4182035)

Time-varying output group formation tracking for heterogeneous multi-agent systems

  • TIAN Lei ,
  • ZHAO Qilun ,
  • DONG Xiwang ,
  • LI Qingdong ,
  • REN Zhang
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100083, China;
    3. Beijing Institute of Electronic System Engineering, Beijing 100854, China;
    4. Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100083, China

Received date: 2019-10-13

  Revised date: 2019-11-20

  Online published: 2019-12-26

Supported by

National Natural Science Foundation of China (61922008,61973013,61873011,61803014); Aeronautical Science Foundation of China (20170151001); National Defense Innovation Zone Project (18-163-00-TS-001-001-34); Beijing Natural Science Foundation (4182035)

摘要

空地协同控制是前沿的热点研究之一,以无人机、无人车为代表的空地智能体动力学模型的差异为研究带来了挑战。研究了高阶异构多智能体系统在有向拓扑条件下的分组输出时变编队跟踪控制问题,提出了虚拟领导者、分组领导者以及跟随者组成的三层协同控制架构。虚拟领导者用于规划整个多智能体系统的状态轨迹,分组领导者跟踪虚拟领导者所提供的轨迹信息,并相互协作以实现分组间的协同配合。跟随者跟踪分组领导者的输出并实现期望的输出编队。在有向通信拓扑结构条件下,基于局部邻居间的相对信息、观测器理论和滑模控制理论构造了控制协议,利用Lyapunov稳定性理论证明协议的有效性。数值仿真结果表明提出的方法能够实现无人机、无人车等异构智能体的空地协同,具有较好的工程应用价值。

本文引用格式

田磊 , 赵启伦 , 董希旺 , 李清东 , 任章 . 异构多智能体系统分组输出时变编队跟踪控制[J]. 航空学报, 2020 , 41(7) : 323727 -323727 . DOI: 10.7527/S1000-6893.2019.23727

Abstract

Air ground cooperative control is one of the hottest researches, and the differences between air ground agents' dynamic models represented by Quadrotor UAVs and unmanned vehicles bring great challenges. This paper investigates time-varying output group formation tracking control problems for heterogeneous high-order multi-agent systems with directed topologies. Agents in the structure of heterogeneous multi-agent systems' models given by this paper are classified into three types, including the virtual leader, the group leader, and the follower. The virtual leader can be used to control the trajectory of states associated with the whole heterogeneous multi-agent systems. Group leaders track the trajectory determined by the virtual leader and achieve the coordination among subgroups by communicating with each other. Followers track the states of group leaders and form the desired formation. Under the condition of directed topologies, based on neighboring information, observer theory and sliding mode control theory, a control protocol is constructed. Then the stability of heterogeneous multi-agent systems under the protocol is proven by using Lyapunov theory. Numerical simulations indicated that the approaches presented by this paper can be applied to the physical models represented by Quadrotor UAVs and Unmanned vehicles and have significant project application value.

参考文献

[1] 林来兴. 小卫星编队飞行及其轨道构成[J]. 中国空间科学技术, 2001, 21(1):23-28. LIN L X. Formation flying of small satellite and its orbital configuration[J]. Chinese Space Science and Technology, 2001, 21(1):23-28(in Chinese).
[2] RAY R J, COBLEIGH B R, VACHON M J. Flight test techniques used to evaluate performance benefits during formation flight[R]. Washington, D.C.:NASA Dryden Research Center, 2002.
[3] 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49(3):1-14. ZONG Q, WANG D D, SHAO S K, et al. Research status and development of muli-UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49(3):1-14(in Chinese).
[4] OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53:424-440.
[5] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2):505-512.
[6] DONG X W, HU G Q. Time-varying formation control for general linear multi-agent systems with switching directed topologies[J]. Automatica, 2016, 73:47-55.
[7] HE L L, ZHANG J Q, HOU Y Q, et al. Time-varying formation control for second-order discrete-time multi-agent systems with switching topologies and nonuniform communication delays[J]. IEEE Access, 2019, 7:65379-65389.
[8] HE L L, ZHANG J Q, HOU Y Q, et al. Time-varying formation control for second-order discrete-time multi-agent systems with directed topologies and nonuniform communication delays[J]. IEEE Access, 2019, 7:33517-33527.
[9] HUA Y Z, DONG X W, LI Q D, et al. Distributed time-varying formation robust tracking for general linear multiagent systems with parameter uncertainties and external disturbances[J]. IEEE Transactions on Cybernetics, 2017, 47(8):1959-1969.
[10] YU J L, DONG X W, LI Q D, et al. Robust H∞ guaranteed cost time-varying formation tracking for high-order multiagent systems with time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(4):1465-1475.
[11] YU J L, DONG X W, LI Q D, et al. Practical time-varying formation tracking for multiple non-holonomic mobile robot systems based on the distributed extended state observers[J]. IET Control Theory & Applications, 2018, 12(12):1737-1747.
[12] DONG X W, LI Q D, ZHAO Q L, et al. Time-varying group formation analysis and design for second-order multi-agent systems with directed topologies[J]. Neurocomputing, 2016, 205:367-374.
[13] LI Y F, DONG X W, LI Q D, et al. Time-varying group formation control for second-order multi-agent systems with switching directed topologies[C]//Proceedings of 201736th Chinese Control Conference, 2017:8530-8535.
[14] 韩亮, 任章, 董希旺,等. 多无人机协同控制方法及应用研究[J]. 导航定位与授时, 2018, 25(4):5-11. HAN L, REN Z, DONG X W, et al. Research on cooperative control method and application for multiple unmanned aerial vehicles[J]. Navigation Positioning & Timing, 2018, 25(4):5-11(in Chinese).
[15] LI Z, CHEN M Z Q, DING Z. Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs[J]. Automatica, 2016, 68:179-183.
[16] ADIB Y F, LEWIS F L, SU R. Output regulation of linear heterogeneous multi-agent systems via output and state feedback[J]. Automatica, 2016, 67:157-164.
[17] LIU X K, WANG Y W, XIAO J W, et al. Distributed hierarchical control design of coupled heterogeneous linear systems under switching networks[J]. International Journal of Robust and Nonlinear Control, 2016, 27(8):1242-1259.
[18] LI Z, LIU X, REN W, et al. Distributed tracking control for linear multiagent systems with a leader of bounded unknown input[J]. IEEE Transactions on Automatic Control, 2013, 58(2):518-523.
[19] TANG Y, HONG Y, WANG X. Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders[J]. Automatica, 2015, 62:154-160.
[20] LYU Y, LI Z, DUAN Z, et al. Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input[J]. Automatica, 2016, 74:308-314.
[21] QU Z H. Cooperative control of dynamical systems:Applications to autonomous vehicles[M]. London:Springer-Verlag, 2009.
[22] 田磊, 王蒙一, 赵启伦, 等. 拓扑切换的集群系统分布式分组时变编队跟踪控制[J]. 中国科学:信息科学, 2020, 50(3):408-423. TIAN L, WANG M Y, ZHAO Q L, et al. Distributed time-varying group formation tracking for cluster systems with switching interaction topologies[J]. Scientia Sinica Informations, 2020, 50(3):408-423(in Chinese).
[23] WANG Z M, YANG C, DONG X W, et al. Time-varying formation control for mobile robots:Algorithms and experiments[C]//Proceedings of 201743rd IEEE Industrial Electronics Society Conference. Piscataway:IEEE Press, 2017:7239-7244.
文章导航

/