材料工程与机械制造

钛基稀土激光熔覆层组织细化机制及性能

  • 张天刚 ,
  • 庄怀风 ,
  • 薛鹏 ,
  • 张倩 ,
  • 姚波 ,
  • 李宝轩
展开
  • 1. 中国民航大学 工程技术训练中心, 天津 300300;
    2. 中国民航大学 中欧航空工程师学院, 天津 300300;
    3. 中国民航大学 航空工程学院, 天津 300300

收稿日期: 2019-10-09

  修回日期: 2019-11-16

  网络出版日期: 2019-12-26

基金资助

国家自然科学基金(51371125);中央高校基本科研业务费专项资金(3122018D013)

Microstructure refinement mechanism and properties of Ti-based rare earth laser cladding layers

  • ZHANG Tiangang ,
  • ZHUANG Huaifeng ,
  • XUE Peng ,
  • ZHANG Qian ,
  • YAO Bo ,
  • LI Baoxuan
Expand
  • 1. Engineering Techniques Training Center, Civil Aviation University of China, Tianjin 300300, China;
    2. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
    3. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China

Received date: 2019-10-09

  Revised date: 2019-11-16

  Online published: 2019-12-26

Supported by

National Natural Science Foundation of China (51371125); Fundamental Research Funds for the Central Universities (3122018D013)

摘要

采用通快TruDisk 4002光纤激光器在TC4合金表面分别制备了0wt% Y2O3和3wt% Y2O3的TC4+Ni45+Co-WC钛基耐磨复合涂层。利用XRD、SEM、EDS、EPMA、显微硬度计和摩擦磨损试验机等分析了涂层组织、显微硬度和摩擦学性能。结果表明,两种涂层表面均无裂纹孔隙等缺陷,且生成相一致,主要包括TiC、TiB2、Ti2Ni、WC和α-Ti;0wt% Y2O3涂层组织存在明显偏析,析出相尺寸粗大且方向性明显;3wt% Y2O3涂层组织呈均匀弥散状态分布,细化特征明显;经Bramfitt二维点阵错配度计算,(100)Y2O3和(100)Ti2Ni、(111)Y2O3和(110)TiC、(110)Y2O3和(1010)TiB2间的错配度分别为5.75%、6.72%和10.10%,Y2O3作为异质形核核心对Ti2Ni、TiC和TiB2的细化能力依次为Ti2Ni > TiC > TiB2;0wt% Y2O3和3wt% Y2O3涂层显微硬度分别为600~630 HV0.5和470~480 HV0.5,较基材分别提高了约62%和26%;3wt% Y2O3涂层耐磨减摩性最优,其磨损体积和摩擦系数较0wt% Y2O3涂层分别下降了约47.8%和5.0%,磨损机制主要为磨粒磨损。

本文引用格式

张天刚 , 庄怀风 , 薛鹏 , 张倩 , 姚波 , 李宝轩 . 钛基稀土激光熔覆层组织细化机制及性能[J]. 航空学报, 2020 , 41(9) : 423553 -423553 . DOI: 10.7527/S1000-6893.2019.23553

Abstract

TC4+Ni45+Co-WC Ti-based wear-resistant composite coatings with different Y2O3 additions (0wt% and 3wt%) were prepared on the surface of TC4 alloy by using TRUMPF TruDisk 4002 fiber laser. The microstructure, microhardness, and tribological properties of the coatings were analyzed by using XRD, SEM, EDS, EPMA, microhardness tester, and friction and wear apparatus. The results show that there are no cracks, pores, and other defects on the two coating surfaces, and the formation phases are consistent, mainly including TiC, TiB2, Ti2Ni, WC and α-Ti. In 0wt%Y2O3 coating, there is an obvious microstructure segregation and the size of the precipitated phase is coarse with the evident dendrite orientation. In 3wt%Y2O3 coating, the microstructure is uniformly dispersed and the refinement effect is significant. According to Bramfitt two-dimensional lattice misfit calculation, the misfit between (100)Y2O3 and (100)Ti2Ni, (111)Y2O3 and (110)TiC, and (110)Y2O3 and (101-0)TiB2 are 5.75%, 6.72% and 10.10%, respectively. The ability of Y2O3 acting as an effective heterogeneous nucleus to refine Ti2Ni, TiC and TiB2 is Ti2Ni > TiC > TiB2. The microhardness of 0wt%Y2O3 coating and 3wt%Y2O3 coating is 600-630 HV0.5 and 470-480 HV0.5, which is 62% and 26% higher than that of the substrate. 3wt%Y2O3 coating shows the best wear resistance and anti-friction. The wear volume and friction coefficient are 47.8% and 5.0% lower than those of 0wt%Y2O3 coating, and the wear mechanism is mainly abrasive wear.

参考文献

[1] 王晓明, 朱胜, 杨柏俊, 等. 磁场辅助激光熔覆铝基金属玻璃覆层[J]. 航空学报, 2018, 39(11):231-239. WANG X M, ZHU S, YANG B J, et al. Aluminum-based metallic glass coatings prepared with magnetic field assisted laser cladding[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):231-239(in Chinese).
[2] LI J, YU Z S, WANG H P, et al. Microstructural evolution of titanium matrix composite coatings reinforced by in situ synthesized TiB and TiC by laser cladding[J]. International Journal of Minerals Metallurgy & Materials, 2010, 17(4):481-488.
[3] 王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5):473-478. WANG H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):473-478(in Chinese).
[4] 张天刚, 庄怀风, 肖海强, 等. 稀土对Ti基激光熔覆层组织与摩擦磨损性能的影响[J]. 中国激光, 2019, 46(9):128-136. ZHANG T G, ZHUANG H F, XIAO H Q, et al. Effect of rare earth on microstructure and friction and wear properties of Ti-based laser cladding layer[J]. Chinese Journal of Lasers, 2019, 46(9):128-136(in Chinese).
[5] YANG J, HUANG L J, LIN G. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Alloys and Compounds, 2018, 767:1196-1215.
[6] 李嘉宁, 刘科高, 张元彬. 激光熔覆技术及应用[M]. 北京:化学工业出版社, 2015. LI J N, LIU K G, ZHANG Y B. Laser cladding technology and application[M]. Beijing:Chemical Industry Press, 2015(in Chinese).
[7] OCHONOGOR O F, MEACOCK C, ABDULWAHAB M, et al. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite[J]. Applied Surface Science, 2012, 263:591-596.
[8] LI S N, XIONG H P, LI N, et al. Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding[J]. Ceramics International, 2016, 43(1):961-967.
[9] 杨胶溪, 余兴, 王艳芳, 等. TiC含量对激光熔覆制备TiC/Ti基复合涂层组织与性能的影响[J]. 航空材料学报, 2018, 38(3):65-71. YANG J X, YU X, WANG Y F, et al. Effect of TiC content on microstructures and properties of laser cladding TiC/Ti based composite coatings[J]. Journal of Aeronautical Materials, 2018, 38(3):65-71(in Chinese).
[10] ZHANG K M, ZOU J X, LI J, et al. Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(11):2192-2197.
[11] SHAKTI K, AMITAVA M, DAS A K, et al. Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy[J]. Surface and Coatings Technology, 2018, 349:37-49.
[12] LI N, XIONG Y, XIONG H, et al. Microstructure, formation mechanism and property characterization of Ti+SiC laser cladded coatings on Ti6Al4V alloy[J]. Materials Characterization, 2019, 148:43-51.
[13] WENG F, YU H J, CHEN C Z, et al. Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti-6Al-4V alloy[J]. Journal of Alloys Compounds, 2015, 650:178-184.
[14] 马永, 朱红梅, 孙楚光, 等. TC4钛合金表面激光熔覆掺Y2O3复合涂层的显微组织和性能[J]. 表面技术, 2017, 46(6):238-243. MA Y, ZHU H M, SUN C G, et al. Microstructure and properties of Y2O3-doped laser cladded composite coating on TC4 titanium alloy[J]. Surface Technology, 2017, 46(6):238-243(in Chinese).
[15] QUAZI M M, FAZAL M A, HASEEB A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings:A review[J]. Journal of Rare Earths, 2016, 34(6):549-564.
[16] TIAN Y S, CHEN C Z, CHEN L X, et al. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique[J]. Scripta Materialia, 2006, 54(5):847-852.
[17] 王培, 李争显, 黄春良, 等. TC4钛合金表面激光熔覆Ni包WC复合涂层研究[J]. 钛工业进展, 2014, 31(3):39-42. WANG P, LI Z X, HUANG C L, et al. Research of Ni/WC composite coatings on TC4 titanium alloy by laser cladding[J]. Titanium Industry Progress, 2014, 31(3):39-42(in Chinese).
[18] FARAHMAND P, LIU S, ZHANG Z, et al. Laser cladding assisted by induction heating of Ni-WC composite enhanced by nano-WC and La2O3[J]. Ceramics International, 2014, 40(10):15421-15438.
[19] LI J, LUO X, LI G J. Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J]. Wear, 2014, 310(1-2):72-82.
[20] 张瑄珺, 李军, 王慧萍, 等. 添加Y2O3对激光熔覆原位合成TiB2和TiC增强镍基复合涂层组织的影响[J]. 机械工程材料, 2012, 36(7):17-20. ZHANG X J, LI J, WANG H P, et al. Effect of adding Y2O3 on microstructure of TiB2 and TiC reinforced Ni-based composite coating in-situ synthesized by laser cladding[J]. Materials for Mechanical Engineering, 2012, 36(7):17-20(in Chinese).
[21] DAS A K, SHARIFF S M, CHOUDHURY R A. Effect of rare earth oxide (Y2O3) addition on alloyed layer synthesized on Ti-6Al-4V substrate with Ti+SiC+h-BN mixed precursor by laser surface engineering[J]. Tribology International, 2016, 95:35-43.
[22] ZHU R D, LI Z Y, LI X X, et al. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition[J]. Applied Surface Science, 2015, 353:405-413.
[23] 聂金凤. 铝合金中TiC生长与演变及硼掺杂改性的研究[D]. 济南:山东大学, 2013. NIE J F. Study on the growth, evolution and boron-doping modification of TiC in Al alloys[D]. Ji'nan:Shandong University, 2013(in Chinese).
[24] WANG K L, ZHANG Q B, SUN M L, et al. Rare earth elements modification of laser-clad nickel-based alloy coatings[J]. Applied Surface Science, 2001, 174(3-4):191-200.
[25] LI M X, HE Y Z, YUAN X M. Effect of nano-Y2O3 on microstructure of laser cladding cobalt-based alloy coatings[J]. Applied Surface Science, 2006, 252(8):2882-2887.
[26] 王成磊, 张光耀, 高原, 等. Y2O3在6063铝合金表面激光熔覆Ni基熔覆层中的作用机制[J]. 稀有金属, 2016, 40(3):201-206. WANG C L, ZHANG G Y, GAO Y, et al. Mechanism of Y2O3 affecting laser cladding of Ni-based coating on 6063 Al alloy substrate[J]. Chinese Journal of Rare Metals, 2016, 40(3):201-206(in Chinese).
[27] BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970, 1(7):1987-1995.
[28] KATAGIRI S, ISHIZAWA N, MARUMO F. A new high temperature modification of face-centered cubic Y2O3[J]. Powder Diffraction, 1993, 8(1):60.
[29] MUELLER M H, KNOTT H W. The crystal structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O[J]. Transactions of the Metallurgical Society of AIME, 1963, 227:674-678.
[30] EHRLICH P. Ueber die binaeren system des titans mit den elemnten N, C, B und Be[J]. Crystal Research and Technology, 1986, 21:735-740.
[31] HEGENSCHEIDT T. Moeglichkeiten und grenzen des Roentgen-Beugungs experiments aufgezeigt am beispiel dreier "einfacher" strukturen[D]. Karlsruhe:Universitaet Karlsruhe, 1998:1-81.
文章导航

/