To meet the need of large-scale damage tolerance titanium alloy for new generation fighter, this paper examines the TC4-DT titanium alloy’s composition and macrostructure control of large-scale bar and forging stock, the microstructure control during heat treatment process of large-scale forgings, the manufacturing process control of material and forgings, and the fatigue strengthening of parts. The results of large-scale ingot melting, large-scale bar and forging stock trail production, heavy section forging trail production, and structural design and manufacture show that the damage tolerance titanium alloy TC4-DT’s composition of large-scale ingots is homogeneous and the tensile strength coefficient variation of large-scale forging stocks and heavy section forgings can be reduced to about 2%. The impacts of laser shock peening, shot peening, and cold extrusion have remarkable life increment of the titanium alloy. The damage tolerance titanium alloy TC4-DT has been widely applied on new generation fighters.
[1] LINEBERGER L. Titanium aerospace alloy[J]. Advanced Materials & Progress, 1998, 153(5):45.
[2] JARFALL L. Verification of the damage tolerance of a fighter aircraft[J]. International Journal of Fatigue, 1994, 16(1):67-74.
[3] SEONG S, YOUNOSSI O, GOLDSMITH B, et al. Titanium industrial base, price trends, and technology initiatives:MG-789-AF[R]. Santa Monica:RAND Corporation, 2009.
[4] YOUNOSSI O, KENNEDY M, GRASER J C. Military airframe costs-the effects of advanced materials and manufacturing processes:MR-1370-AF[R]. Santa Monica:RAND Corporation, 2001.
[5] DING R, GUO Z X. Microstructural evolution of Ti-6Al-4V alloy during B-phase processing[J]. Materials Science and Engineering A, 2004, A365:172-179.
[6] FILIP R, KUBIAK K, ZIAJIA W, et al. The effect of microstructure on the mechanical properties of two-phase titanium[J]. Journal of Materials Processing Technology, 2003,133:84-89.
[7] 祝力伟, 朱知寿, 王新南, 等. 不同片层组织对TC4-DT钛合金裂纹扩展行为的影响[J]. 航空材料学报, 2011, 31(S1):164-167. ZHU L W, ZHU Z S, WANG X N, et al. Influence of lamellar microstructure on fatigue crack propagation behavior of TC4-DT of damage tolerance[J]. Journal of Aeronautical Materials, 2011, 31(S1):164-167(in Chinese).
[8] NALLA R K, BOYCE B L, CAMPBELL J P, et al. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V:bimodal vs. lamellar structures[J]. Metallurgical and Materials Transactions A, 2002, 33(A):907-908.
[9] SAE International. Titanium alloy, sheet, strip, and plate 6.0Al-4.0V, extra low interstitial annealed:AMS 4907L[S]. Warrendale:SAE International, 2018:1-10.
[10] DURET N. Titanium for damage tolerance applications on A380[C]//The 10th Conference on Titanium. Hamburg:TMS, 2003:2667-2668.
[11] 曹春晓. 选材判据的变化与高损伤容限钛合金的发展[J]. 金属学报, 2002, 38(z1):4-11. CAO C X. Change of material selection criterion and development of high damage-tolerant titanium alloy[J]. Acta Metallurgica Sinica, 2002, 38(z1):4-11(in Chinese).
[12] SAE International. Titanium alloy, damage-tolerant grade plate 6Al-4V beta annealed:AMS4905F[S]. Warrendale:SAE International, 2017:1-9.
[13] 朱知寿, 马少俊, 王新南, 等. TC4-DT损伤容限型钛合金疲劳裂纹扩展特性的研究[J]. 钛工业进展, 2005, 22(6):10-13. ZHU Z S, MA S J, WANG X N, et al. Study on fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy[J]. Titanium Industry Progress, 2005, 22(6):10-13(in Chinese).
[14] 郭萍, 赵永庆, 洪权, 等. 损伤容限型TC4-DT钛合金性能[J]. 稀有金属材料与工程, 2013, 42(11):2367-2370. GUO P, ZHAO Y Q, HONG Q, et al. Properties of damage tolerance TC4-DT titanium alloy[J]. Rare Metal Materials and Engineering, 2013, 42(11):2367-2370(in Chinese).
[15] 赵小花, 何永胜, 罗文忠, 等. Ti-1023合金VAR熔炼数值模拟研究[J]. 中国材料进展, 2018, 37(5):367-371. ZHAO X H, HE Y S, LUO W Z, et al. Numerical simulation of the VAR process of Ti-1023 alloy ingot with melt flow-VAR and validation[J]. Materials China, 2018, 37(5):367-371(in Chinese).
[16] GUAN R G, WANG X, SHANG Y Q, et al. Shear model of metal melt flowing on vibration wall and effect of shear stress on solidification microstructure[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6):650-658.
[17] 王少阳, 王文盛, 伍群兰, 等. TC4-DT钛合金锻件的一种异常低倍组织[J]. 热加工工艺, 2019, 48(13):177-180. WANG S Y, WANG W S, WU Q L, et al. A abnormal macrostructure of TC4-DT titanium alloy forgings[J]. Hot Working Technology, 2019, 48(13):177-180(in Chinese).
[18] 王文盛, 刘向宏, 赵小花, 等. TC4-DT钛合金的相变过程原位观察[J]. 钛工业进展, 2018, 35(4):11-16. WANG W S, LIU X H, ZHAO X H, et al. In-situ observation of the phase transformation process of TC4-DT titanium alloy[J]. Titanium Industry Progress, 2018, 35(4):11-16(in Chinese).
[19] 王华. TC4-DT钛合金模锻件组织和性能的控制研究[J]. 热加工工艺, 2017, 46(13):163-165. WANG H. Control study on microstructure and properties of TC4-DT titanium alloy die forgings[J]. Hot Working Technology, 2017, 46(13):163-165(in Chinese).
[20] 王凯旋, 冯贞伟, 丁永峰, 等. TC17钛合金超大规格棒材的制备[J]. 钛工业进展, 2014, 31(5):32-35. WANG K X, FENG Z W, DING Y F, et al. Preparation of the large size TC17 titanium alloy bar[J]. Titanium Industry Progress, 2014, 31(5):32-35(in Chinese).
[21] 陶春虎, 刘庆瑔, 刘昌奎, 等. 航空用钛合金的失效及其预防[M]. 第2版. 北京:国防工业出版社, 2013:8-15. TAO C F, LIU Q Q, LIU C K, et al. Failure and prevention of aeronautical titanium alloy[M]. 2nd ed. Beijing:National Defense Industry Press, 2013:8-15(in Chinese).